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ANNIHILATING SUBMODULE GRAPHS FOR
MODULES OVER COMMUTATIVE RINGS

M. BAZIAR

Abstract. In this article, we give several generalizations of the
concept of annihilating an ideal graph over a commutative ring
with identity to modules. We observe that, over a commutative
ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. More-
over, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also
for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and
only if M is a uniform module, and ann(M) is a prime ideal of R.

1. Introduction

In the literature, there are many papers on assigning a graph to a
ring, group, semigroup or module (see for example [1]-[16], [19]and [21]-
[25]). The concept of zero-divisor graph of a commutative ring R was
first introduced by Beck [11], where he was mainly interested in color-
ings. In his work, all elements of the ring were vertices of the graph.
The investigation of colorings of a commutative ring was then contin-
ued by Anderson and Naseer [9]. Let Z(R) be the set of zero-divisors
of R. In [8], Anderson and Livingston associated a graph, Γ(R), to R
with vertices Z(R) \ {0}, the set of non-zero zero-divisors of R, and
for distinct x, y ∈ Z(R) \ {0}, the vertices x, and y are adjacent if
and only if xy = 0. In [23], Sharma and Bhatwadekar define another
graph on R, G(R), with vertices as elements of R, where, two distinct
vertices a, and b are adjacent, if and only if Ra + Rb = R. (See also
[21] and [5], in which, the notion “comaximal graph of commutative
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rings” is investigated.) Recently, Anderson and Badawi, in [6], have
introduced and studied the total graph of R, denoted by T (Γ(R)). It
is the (undirected) graph with all elements of R as vertices, and for
distinct x, y ∈ R, the vertices x and y are adjacent, if and only if
x + y ∈ Z(R). We denote the set of all proper ideals of R by I(R). In
[13], Behboodi and Rakeei named an ideal, I of R, an annihilating-ideal
if there exists a non-zero ideal J of R, such that IJ = (0), and used
the notation A(R) for the set of all annihilating-ideals of R. They de-
fined the annihilating-ideal graph of R, denoted by AG(R), as a graph
with vertices A(R)∗ = A(R)\ {(0)}, where, distinct vertices I and J
are adjacent, if and only if IJ = (0). They extensively investigated
the interplay between the graph-theoretic properties of AG(R) and the
ring-theoretic properties of R. There are a few papers on annihilating
the ideal graph (see [1] ,[13], and [14]). In the next sections, we in-
troduce and study various module generalizations of the annihilating
ideal graphs of commutative rings.

Recall that a graph Γ is connected, if there is a path between any two
distinct vertices. For the distinct vertices x and y of Γ, let d(x, y) be
the length of the shortest path from x to y (d(x, y) = ∞, if there is no
such path). The diameter of Γ, diam(Γ), is defined as sup {d(x, y) | x
and y are distinct vertices of Γ }. The girth of Γ, denoted by g(Γ), is
defined as the length of the shortest cycle in Γ (g(Γ) = ∞; if Γ contains
no cycles).

2. Annihilating graphs for modules

We begin with the following definition (we note that for any R-
module M , (N : M) := Ann(M/N), for N ≤ M).

Definition 2.1. Let M be an R-module. A submodule N of M is
called:

• weakly annihilating submodule, if either N = 0 or (N : M)(K :
M)M = 0, for some non-zero proper submodule K of M .

• annihilating sub-module, if either N = 0 or 0 ̸= (N : M) and
(N : M)(K : M)M = 0 for some non-zero proper submodule
K of M with 0 ̸= (K : M).

• strongly annihilating submodule, if either N = 0 or Ann(M) ⊂
(N : M), and (N : M)(K : M)M = 0 for some non-zero proper
sub-module K of M with Ann(M) ⊂ (K : M).
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For any module M , we denote A∗(M), A(M) and A∗(M), respec-
tively, for the set of weakly annihilating submodule, annihilating sub-
module, and strongly annihilating submodule of M . It is clear that

A∗(M) ⊆ A(M) ⊆ A∗(M).

The following proposition shows that for any module, we only need
to consider strongly annihilating and weakly annihilating submodules.

Proposition 2.2. Let R be a ring and M be an R-module. Then
1) If M is a faithful R-module, then A∗(M) = A(M);
2) If M is a non-faithful R-module, then A(M) = A∗(M).

Proof. By Definition 2.1, the results hold. �
The following proposition shows that, for M = R, the three parts

of Definitions 2.1 are equivalent and they are the generalizations of
annihilating ideal.

Proposition 2.3. Let R be any ring, and I be an ideal of R. Then
the following are equivalent:
1) I is an annihilating ideal of R;
2) I is a weakly annihilating submodule of RR;
3) I is an annihilating submodule of RR;
4) I is a strongly annihilating submodule of RR.

Proof. The proof is easy. �
Now, for an R-module M , we let Ã∗(M) := A∗(M) \ {0}, Ã(M) :=

A(M) \ {0}, and Ã∗(M) := A∗(M) \ {0}. Then we associate the three
undirected (simple) graphs AG∗(RM), AG(RM), and AG∗(RM) to M

with vertices Ã∗(M), Ã(M), and Ã∗(M), respectively, and for which,
the vertices N , and K are adjacent, if and only if (N : M)(K : M)M =
0. It is clear that we have AG∗(RM) ⊆ AG(RM) ⊆ AG∗(RM), as in-
duced subgraphs. In fact, Proposition 2.2 shows that for any R-module
M , either AG(RM) = AG∗(RM) or AG(RM) = AG∗(RM).
Let AG(R) be the annihilating ideal graph of a ring R. By Proposition
2.3, we have AG∗(RR) = AG(RR) = AG∗(RR) = AG(R). In the follow-
ing theorem, we determine when AG∗(RM) = AG(RM) = AG∗(RM).

Theorem 2.4. Let M be an R-module. Then AG∗(RM) = AG(RM) =
AG∗(RM), if and only if Ann(M) ⊂ (N : M), for every non-zero
submodule N of M .

Proof. (⇒) If for some non-zero proper submodule N of M , (N :
M) =Ann(M), then for every non-zero submodule K of M , we have
(K : M)(N : M)M = 0, so that N −−−K is a path in AG∗(M), and
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hence, is a path in AG∗(M), which implies Ann(M) ⊂ (N : M), which
is a contradiction.
(⇐) By definition 2.1. �

Recall that an R-module M is called multiplication, in case for every
non-zero submodule N of M , there exists an ideal I of R, such that
N = IM . One can show that if M is a multiplication module, then for
every submodule N of M , we have N = (N : M)M .

Corollary 2.5. LetM be a multiplication R-module. Then AG∗(RM) =
AG(RM) = AG∗(RM).

Proof. The result holds, since multiplication modules have the property
that for every non-zero submodule N of M , Ann(M) ⊂ (N : M). �

Proposition 2.6. Let M be an R-module with 0 ̸= I = Ann(M).
Then the following statements hold.
(1) AG(RM) = AG∗(RM) = AG∗(R/IM);
(2) AG∗(RM) = AG∗(R/IM) = AG(R/IM).

Proof. Let N ∈ ÃG∗(M). Then there exists 0 ̸= K ≤ M such that
(N : M)(K : M)M = 0. It is clear that I = Ann(M) ⊆ (N :
M) ∩ (K : M), AnnR/I(M/N) = (N : M)/I, AnnR/I(M/K) = (K :
M)/I, and ((N : M)/I)(K : M)/I)M = 0. This follows that N ∈
A∗(RM), if and only if N ∈ A∗(R/IM), and the vertices N and K
are adjacent in AG∗(RM), if and only if N and K are adjacent in
AG∗(R/IM). Therefore, AG∗(RM) = AG∗(R/IM). Similarly, we can
show that AG∗(RM) = AG∗(R/IM). �

Proposition 2.7. Let M be a homogeneous sem-isimple R-module.
Then AG∗(RM) is the empty graph.

Proof. Since Ann(M) is a maximal ideal, the result holds. �

Proposition 2.8. Let M be an R-module. Then AG∗(RM) is the
empty graph, if and only if Ann(M) is a prime ideal of R.

Proof. Since for every non-zero submodules N,K of M , (N : M)(K :
M)M = 0 if and only if (N : M)M = 0 or (K : M)M = 0, if and only
if Ann(M) is a prime ideal of R, we are done. �

Corollary 2.9. Let M be an R-module. Then AG∗(M) = AG(M) =
AG∗(M) = ∅, if and only if Ann(M) is a prime ideal of R, and
Ann(M) ⊂ (N : M), for every non-zero submodule N of M .

Proof. It follows from Theorem 2.4 and Proposition 2.8. �
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3. Weakly annihilating submodule graph

Now, one may ask a question; when two submodules of an R-module
M maybe connected to each other in AG∗(M)?

Lemma 3.1. Let M be an R-module, and N,K be the submodules of
M .
1) If N ∩K = 0, then N −−−K is a path in AG∗(M).
2) If N −−−K is a path in AG∗(M), then for each 0 ̸= N1 ≤ N and
0 ̸= K1 ≤ K , N1 −−−K1 is also a path in AG∗(M).

Proof. 1) The result holds, since (N : M)(K : M)M ⊆ N ∩K.

2) Let N,K ∈ ÃG∗(M), and 0 ̸= N1 ≤ N . Assume that N −−−K is a
path in AG∗(M), and 0 ̸= K1 ≤ K. Then (N : M)(K : M)M = 0. It is
clear that (N1 : M) ⊆ (N : M), and (K1 : M) ⊆ (K : M). Therefore,
(N1 : M)(K1 : M)M ⊆ (N : M)(K : M)M = 0. Thus N1 −−−K1 is
also a path in AG∗(M). �
Corollary 3.2. Let M be an R-module. Then N ∈ AG∗(M), for every
non-zero non-essential submodule N of M .

In [7, Theorem 2.3], it is shown that, for any commutative ring R,
Γ(R) is connected, and diamΓ(R) ≤ 3. Furthermore, if Γ(R) contains
a cycle, then g(Γ(R)) ≤ 7. Moreover, in [22], it is shown that, for any
commutative ring R, the girth of the zero-divisor graph of R is less
than (or equal to) 4. In the next theorem, we give a generalization of
these result for modules.

Theorem 3.3. Let M be any R-module.
1) The graph AG∗(RM) is a connected graph, and diamAG∗(RM) ≤ 3.
2) If AG∗(RM) contains a cycle, then g(AG∗(RM)) ≤ 4.

Proof. (1) Let N,K ∈ ÃG∗(M) be distinct. If (N : M)(K : M)M = 0,
then d(N,K) = 1. So suppose that (N : M)(K : M)M ̸= 0. Hence,

there are A,B ∈ ÃG∗(M) \ {N,K} with (A : M)(N : M)M = (B :
M)(K : M)M = 0. If (A : M)(B : M)M = 0, then N−−A−−B−−K is
a path of length 3. Thus we may assume that (A : M)(B : M)M ̸= 0;
then T = A ∩ B ̸= 0. Hence by Lemma 2.1, N −−T −−K is a path of
length 2, and hence, d(N,K) ≤ 3. Thus diam(AG(RM)) ≤ 3.
(2) Let N1−−N2−−...−−Nk−1−−Nk be a cycle with length k ≥ 3. Put
Nk+1 := N1, and N0 := Nk. If Ni has a proper non-zero submodule Ti

(for some 1 ≤ i ≤ k), then, by Lemma 2.1, Ni−1−−Ti−−Ni+1 is a path,
and Ni−1 −−Ti −−Ni+1 −−Ni −−Ni−1 is a cycle of length at most 4. If
every Ni has no proper non-zero submodule, then every Ni is a simple
module. If N1 ∩N4 = 0 then N1 −−N2 −−N3 −−N4 −−N1
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is a cycle of length 4. If N1∩N4 ̸= 0, then N1 = N4, and N1−−N2−
−N3 −−N4 is a cycle of length 3.Thus g(AG∗(RM)) ≤ 4.

�

Corollary 3.4. Let M be any non-faithful R-module. Then AG(RM)
is connected, and diamAG(RM) ≤ 3. Moreover, if AG(RM) contains
a cycle, then g(AG(RM)) ≤ 4.

Proof. If M is a non-faithful R-module, then, by Proposition 2.2,
AG(RM) = AG∗(RM). Now, apply Theorem 3.3. �

The following result assures us when AG∗(RM) contains a cycle. As
we can see it happens when AG∗(RM) contains a path of length 4. In
fact, when AG∗(RM) has a path of length 4, then gr(AG∗(RM)) ≤ 4.

Proposition 3.5. Let M be an R-module. If AG∗(RM) contains a
path of length 4, then AG∗(RM) contains a cycle.

Proof. Let N1−N2−N3−N4−N5 be a path of length 4. If N2∩N4 = 0,
then N2 and N4 = 0 are adjacent, and hence, N2 −N3 −N4 −N2 is a
cycle. Now, assume that 0 ̸= K 6 N2 ∩N4. One of the following cases
holds:
(Case 1). If K = N1, then, by Lemma 3.1, N1 − N2 − N3 − N1 is a
cycle.
(Case 2). If K = N2, then, by Lemma 3.1, N2 −N3 −N4 −N5 −N2 is
a cycle.
(Case 3). If K = N3, then, by Lemma 3.1, N1 − N2 − N3 − N1 is a
cycle.
(Case 4). If K = N4, then by Lemma 3.1, N3 −N4 −N1 −N2 −N3 is
a cycle.
(Case 5). If K = N5, then by Lemma 3.1, N3−N4−N5−N3 is a cycle.
(Case 6). If K ̸∈ {N1, N2, N3, N4, N5}, then by Lemma 3.1, N1 −K −
N3 −N2 −N1 is a cycle. �

Corollary 3.6. Let R be a ring. If AG(R) contains a path of length
4, then AG(R) contains a cycle.

Proof. By Proposition 3.5, the verification is immediate. �

Let Γ be a graph with vertices V , and let ∅ ̸= A, B ⊆ V . Then
A ! B means that, for each a ∈ A, b ∈ B, a −−− b is a path in Γ.
Also, for each non-zero R-module M , we denote the set of all non-zero
proper submodules of M by S̃(M) (i.e., S̃(M) = S(M)\{0}). Let M =

M1 ⊕ M2, where Mi ̸= 0, i = 1, 2. Then S̃(M1), S̃(M2) ⊆ ÃG∗(M),
and S̃(M1) ! S̃(M2) in AG∗(M).
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Theorem 3.7. Let M be an R-module with A∗(M) ̸= S(M) \ {0}.
Then A∗(M) = ∅, if and only if M is a uniform module, and Ann(M)
is a prime ideal of R.

Proof. Let A∗(M) = ∅. Then, by Lemma 3.1 for non-zero elements
K,N ∈ S(M), N ∩ K must be non-zero. This implies that M is
a uniform R-module. Now, suppose that I and J are ideals of R,
such that IJ ⊆Ann(M), but neither I ⊆Ann(M) nor J ⊆Ann(M).
Therefore,

(JM : M)(IM : M)M ⊆ (JM : M)IM ⊆ IJM = 0.

Hence, IM and JM belong to A∗(M). This is a contradiction. Con-
versely, assume that M is a uniform module with, prime annihilator
such that 0 ̸= N ∈ A∗(M). There exists 0 ̸= K ∈ A∗(M), such that
(N : M)(K : M)M = 0. Therefore (N : M)(K : N) ⊆Ann(M),
and hence, either (N : M) ⊆Ann(M) or (K : M) ⊆Ann(M) because
Ann(M) is a prime ideal. Hence, for each non-zero submodule T of
M , either (T : M)(N : M)M = 0 or (T : M)(K : M)M = 0. Thus
A∗(M) = S(M) \ {0}. This is a contradiction. �

Corollary 3.8. Let R be a ring. R is a domain, if and only if there
exists a faithful R-module M with Γ∗(M) = ∅.

Proof. By Theorem 3.7, the verification is immediate. �

Proposition 3.9. Let M be a non-simple semisimple R-module. Then
AG∗(RM) is a connected graph with vertex set S̃(M).

Proof. Since every proper submodule of a semisimple module M is a
direct summand of M , by Lemma 3.1 is evident. �

Lemma 3.10. Let M = M1 ⊕ M2, and 0 ̸= N ∈ Ã∗(M1). Then

N ⊕ 0 ∈ Ã∗(M). Moreover, if the vertices N and K are adjacent in
AG∗(M1), then N ⊕ 0, K ⊕ 0 are adjacent in AG∗(RM).

Proof. It is clear that for every N ≤ M1;

M1 ⊕M2

N ⊕ 0
∼=

M1

N
⊕M2.

Therefore, if N ∈ Ã∗(M1), then there exists 0 ̸= K ≤ M1, such that
(N : M1)(K : M1)M1 = 0. Now, (N ⊕ 0 : M1 ⊕M2) = Ann(M1

N
⊕M2),

and (K ⊕ 0 : M1 ⊕M2) = Ann(M1

K
⊕M2). Thus (N⊕0 : M1⊕M2)(K⊕

0 : M1 ⊕ M2)M = 0, and it follows that N ⊕ 0 ∈ Ã∗(M). Now, the
”moreover” statement is clear. �
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Theorem 3.11. Let M = M1 ⊕ M2, such that AG∗(M1) ̸= ∅. Then
AG∗(M1) ∼= G, where G is an induced subgraph of AG∗(RM) with

vertex set {N ⊕ 0 ∈ Ã∗(M)| N ∈ Ã∗(M1)}.

Proof. The result is a consequence of Lemma 3.10. �
Lemma 3.12. Let M be an R-module, and f ∈ EndR(M) be a non-
monic and non-zero endomorphism. Then ker(f) is adjacent to Im(f)
in AG∗(M).

Proof. Let K = ker(f), and I = Im(f). Then:

(K : M)(I : M)M ⊆ (K : M)f(M) ⊆ f((K : M)M) ⊆ f(K) = 0.

Thus ker(f) is adjacent to Im(f). �
Corollary 3.13. Let M be an R-module, and f be a non-monic epi-
morphism of M . Then A∗(M) = S(M) \ {0}.

Proof. Since f is non-monic, ker(f) ̸= 0. By Lemma 3.12, Im(f) = M
is adjacent to ker(f). Now, by Lemma 3.1, any sub-module of M is
adjacent to ker(f). Therefore, A∗(M) = S(M) \ {0}.

�
Corollary 3.14. Let M be an R-module. If A∗(M) ̸= S(M) \ {0},
then M is a Hopfian module.

Proof. Let f : M → M be a non-zero epimorphism. Then f must be
monic. Otherwise, by Corollary 3.13, A∗(M) = S(M) \ {0}, which is a
contradiction. �
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جابجایی های حلقه روی ها مدول برای ساز پوچ مدول زیر های گراف

بازیار محمد
ریاضی گروه پایه، علوم دانشکده یاسوج، دانشگاه یاسوج، ایران،

و جابجایی های حلقه روی ساز پوچ های ال ایده گراف مفهوم از تعمیم چند مقاله این در
همبند AG∗(RM) گراف R حلقه یک روی که دریافتیم ما داد. خواهیم ارائه ها مدول به یکدار
باشد دور یک شامل AG∗(RM) اگر بیشتر، عبارت به است. diamAG∗(RM) ≤ ٣ و
که خاصیت این با M مانند -مدول R هر برای همچنین است. grAG∗(RM) ≤ ۴ گاه آن
و یکنواخت مدول یک M اگر تنها و اگر A∗(M) = ∅ داریم A∗(M) ̸= S(M) \ {٠}

باشد. R حلقه از اول ال ایده یک Ann(M)

ضعیف بطور مدول زیر ساز، پوچ های مدول زیر گراف صفر، علیه مقسوم گراف کلیدی: کلمات
ساز. پوج
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