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HvMV-ALGEBRAS II

M. BAKHSHI

Abstract. In this paper, we continue our study on HvMV-algebras.
The quotient structure of an HvMV-algebra by a suitable type of
congruence is studied, and some properties and related results are
given. Some homomorphism theorems are given, as well. Also the
fundamental HvMV-algebra, and the direct product of a family
of HvMV-algebras are investigated, and some related results are
obtained.

1. Introduction

In 1958, Chang [2] introduced the concept of an MV-algebra as an al-
gebraic proof of completeness theorem for ℵ0-valued  Lukasiewicz propo-
sitional calculus; also see [3]. Many mathematicians have worked on
MV-algebras, and obtained significant results. The hyperstructure the-
ory (also called multialgebras) was introduced in 1934 by Marty [9].
Around the 40’s, several authors worked on the hypergroups, espe-
cially in France and in the United States, but also in Italy, Russia, and
Japan.

Recently, Ghorbani et al. [7] have applied the hyperstructures to
MV-algebras, introduced the concept of hyper MV-algebra and investi-
gated some related results; also see [8, 10]. Hyperstructures have many
applications to several sectors of both the pure and applied sciences.
A short review of the theory of hyperstructures has appeared in [4]. In
[5], a wealth of applications can also be found. There are applications

MSC(2010): Primary: 03B50; Secondary: 06D35

Keywords: MV-algebra, HvMV-algebra, Fundamental MV-algebra.

Received: 6 April 2014, Revised: 17 July 2015.

49



50 BAKHSHI

to the following subjects: geometry, hypergraphs, binary relations, lat-
tices, fuzzy set and rough sets, automata, cryptography, combinatorics,
codes, artificial intelligence, and probabilities.

Hv-structures were introduced by Vougiouklis in the 4th AHA con-
gress [11]; also see [12] and [13]. The concept of Hv-structure constitute
a generalization of the well-known algebraic hyperstructures (hyper-
group, hyperring, hypermodule, and so on). Actually, some axioms
concerning the above hyperstructures such as the associative law, and
distributive law have been replaced by their corresponding weak ax-
ioms. The reader finds in [12] some basic definitions and theorems
about Hv-structures. Since then, the study of the Hv-structure theory
has been pursued in many directions by Vougiouklis, Davvaz, Spar-
talis and others. A survey of the most results and applications of Hv-
structure theory is based up on many papers, some of which contain
more detailed presentations (see [6]).

In this paper, the quotient structure of HvMV-algebras, direct prod-
uct of HvMV-algebras, and their direct product are introduced, and
their properties are investigated, as mentioned in the abstract.

2. Preliminaries

This section is devoted to give some preliminaries from the literature
For more details, we refer to the references.

Definition 2.1. An MV-algebra is an algebra (M ; +,∗ , 0) of type (2,1,0),
satisfying the following properties:

(MV1) + is associative,
(MV2) + is commutative,
(MV3) x + 0 = x,
(MV4) (x∗)∗ = x,
(MV5) x + 0∗ = 0∗,
(MV6) (x∗ + y)∗ + y = (y∗ + x)∗ + x.

On any MV-algebra M , a binary relation ‘≤’ can be defined as x ≤ y,
if and only if x∗ + y = 0∗. Then ≤ is a partial ordering in M .

In this section, the concept of an HvMV-algebra is introduced, and
some basic results are given.

Definition 2.2. An HvMV-algebra is a non-empty set, H endowed with
a binary hyperoperation ‘⊕’, a unary operation ‘∗’, and a constant, ‘0’
satisfying the following conditions:

(HvMV1) x⊕ (y ⊕ z) ∩ (x⊕ y) ⊕ z ̸= ∅, (weak associativity)
(HvMV2) x⊕ y ∩ y ⊕ x ̸= ∅, (weak commutativity)
(HvMV3) (x∗)∗ = x,
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(HvMV4) (x∗ ⊕ y)∗ ⊕ y ∩ (y∗ ⊕ x)∗ ⊕ x ̸= ∅,
(HvMV5) 0∗ ∈ x⊕ 0∗ ∩ 0∗ ⊕ x,
(HvMV6) 0∗ ∈ x⊕ x∗ ∩ x∗ ⊕ x,
(HvMV7) x ∈ x⊕ 0 ∩ 0 ⊕ x,
(HvMV8) 0∗ ∈ x∗ ⊕ y ∩ y⊕ x∗ and 0∗ ∈ y∗ ⊕ x∩ x⊕ y∗ imply x = y.

Remark 2.3. On any HvMV-algebra H, we can define a binary relation
‘≼’ by

x ≼ y ⇔ 0∗ ∈ x∗ ⊕ y ∩ y ⊕ x∗.

Hence, the condition (HvMV8) can be redefined as follows:

x ≼ y and y ≼ x imply x = y.

Let A and B be non-empty subsets of H. By A ≼ B, we mean that
there exist a ∈ A, and b ∈ B, such that a ≼ b. For A ⊆ H, denote the
set {a∗ : a ∈ A} by A∗ and 0∗ by 1.

On H, we define a hyperoperation ‘⊙’ as x ⊙ y = (x∗ ⊕ y∗)∗. The
next theorem gives some properties.

Proposition 2.4. In any HvMV-algebra H, the following hold: ∀x, y ∈
H and ∀A,B ⊆ H,

(1) x⊙ (y ⊙ z) ∩ (x⊙ y) ⊙ z ̸= ∅,
(2) x⊙ y ∩ y ⊙ x ̸= ∅,
(3) 0 ∈ x⊙ 0 ∩ 0 ⊙ x,
(4) 0 ∈ x⊙ x∗ ∩ x∗ ⊙ x,
(5) x ∈ x⊙ 1 ∩ 1 ⊙ x,

Definition 2.5. Let (H;⊕,∗ , 0H), and (K;⊗,⋆ , 0K) be HvMV-algebras,
and let f : H −→ K be a function satisfying the following conditions:

(1) f(0H) = 0K ,
(2) f(x∗) = f(x)⋆,
(3) f(x∗) ≼ f(x)⋆,
(4) f(x⊕ y) = f(x) ⊗ f(y),
(5) f(x⊕ y) ⊆ f(x) ⊗ f(y).

f is called a homomorphism, if it satisfies the conditions (1), (2),
and (4); it is called a weak homomorphism if it satisfies the conditions
(1), (3), and (5), Clearly, if f is a homomorphism, f(1) = 1. For
convenience, we use the same operations for H and K.

By kerf , we mean the set {x ∈ H : f(x) = 0}. As usual, a homo-
morphism that is one-to-one (resp. onto) is called a monomorphism
(resp. epimorphism). A homomorphism which is both an epimorphism
and a monomorphism is called an isomorphism. If f : H −→ K is
an isomorphism, we say that H and K are isomorphic, and we write
H ≃ K.
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Theorem 2.6. Let f : H −→ K be a homomorphism.

(1) f is one-to-one, if and only if kerf = {0}.
(2) f is an isomorphism, if and only if there exists a homomorphism

f−1 : K −→ H, such that ff−1 = 1K and f−1f = 1H .

Definition 2.7. A non-empty subset S of H is called an HvMV-subalgebra
of H, if (S;⊕,∗ , 0) is itself an HvMV-algebra.

The next proposition gives an equivalent condition for an HvMV-
subalgebra.

Proposition 2.8. A nonempty subset S of H is an HvMV-subalgebra
of H if and only if

(1) x⊕ y ⊆ S, for all x, y ∈ S,
(2) x∗ ∈ S, for all x ∈ S.

Corollary 2.9. A non-empty subset S of H is an HvMV-subalgebra, if
and only if

(1) 0 ∈ S,
(2) x∗ ⊕ y ⊆ S, for all x, y ∈ S.

Definition 2.10. Let I be a non-empty subset of H, satisfying
(I0). x ≼ y, and y ∈ I imply x ∈ I.

Then I is called

(1) an HvMV-ideal, if x⊕ y ⊆ I, for all x, y ∈ I,
(2) a weak HvMV-ideal, if x⊕ y ≼ I, for all x, y ∈ I.

It is easy to see that, in any HvMV-algebra H, {0} is a weak HvMV-
ideal, and obviously, H is an HvMV-ideal of H. Also, every HvMV-ideal
is a weak HvMV-ideal.

Theorem 2.11. Let f : H −→ K be a homomorphism.

(1) kerf is a weak HvMV-ideal of H.
(2) If I is an HvMV-ideal of K, f−1(I) is an HvMV-ideal of H.

From now on, in this paper, H is denoted by an HvMV-algebra, unless
otherwise stated.

3. Quotient structures

In this section, it is shown that how we can construct the quotient
HvMV-algebra from the old one, and some homomorphism theorems
are stated and proved. We start with a definition.

Definition 3.1. Let θ be a binary relation in H, and A,B ⊆ H. We
say that
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(1) AθsB, if for all a ∈ A, and for all b ∈ B, aθb,
(2) AθB, if for all a ∈ A, there exists b ∈ B, and for all b ∈ B,

there exists a ∈ A, such that aθb,
(3) AθswB, if for all a ∈ A there exists b ∈ B, such that aθb,
(4) AθwB, if there exist a ∈ A, and b ∈ B, such that aθb.

Obviously, θs ⊆ θ ⊆ θsw ⊆ θw.
It must be noticed that when A and B are singleton, θ = θs = θsw =

θw.

Proposition 3.2. Let θ be a transitive relation in H, and A,B,C ⊆ H.

(1) If AθwB and BθswC, then AθwC.
(2) If AθswB and BθswC, then AθswC.
(3) If AθsB and BθsC, then AθsC.
(4) If AθsB and BθswC, then AθswC.
(5) If AθsB and BθwC, then AθswC.
(6) If AθsB and BθC, then AθC.
(7) If AθB and BθC, then AθC.

Proof. Routine. �
Definition 3.3. Let θ be a binary relation in H with the property

xθy implies that x∗θy∗. (3.1)

θ is said to be

• strongly compatible, if xθy and uθv imply that x⊕ u θsy ⊕ v.
• compatible, if xθy and uθv imply that x⊕ u θy ⊕ v.
• s-weak compatible, if xθy and uθv imply that x⊕ u θswy ⊕ v.
• weakly compatible, if xθy and uθv imply that x⊕ u θwy ⊕ v.

It is clear that every strongly compatible relation is compatible, every
compatible relation is s-weak compatible, and every s-weak compatible
relation is weakly compatible.

Theorem 3.4. Let θ be a reflexive and transitive binary relation in H.
Then θ is compatible, if and only if (3.1) holds, and,

xθy implies that x⊕ a θ y ⊕ a and a⊕ x θ a⊕ y, (3.2)

for all x, y, a ∈ H.

Proof. Assume that θ is compatible, xθy, and a ∈ H. Since θ is reflex-
ive, so aθa, whence x⊕ a θ y ⊕ a and a⊕ x θ a⊕ y.

Conversely, assume that θ satisfies (3.2), xθy, and uθv. Hence, x ⊕
u θ y⊕u and y⊕u θ y⊕v, whence, by Proposition 3.2(7), x⊕u θ y⊕v.

�
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Remark 3.5. In virtue of Proposition 3.2, it is easy to see that an
analogous result holds for strongly compatible relations, and s-weak
compatible relations.

Proposition 3.6. Every reflexive weakly compatible relation θ in H
satisfies:

xθy implies that x⊕ a θw y ⊕ a and a⊕ x θw a⊕ x. (3.3)

Proof. The proof is similar to the proof of Theorem 3.4. �
Proposition 3.7. Let θ be a symmetric binary relation in H. Then θ
is compatible, if and only if it is s-weak compatible.

Proof. In virtue of the observation just after Definition 3.3, it is enough
to prove that every symmetric s-weak compatible relation is compat-
ible. Assume that θ is a symmetric s-weak compatible, and xθy and
uθv, for x, y, u, v ∈ H. Then x⊕ u θsw y ⊕ v, which means that for all
a ∈ x⊕ u, there exists b ∈ y ⊕ v, such that aθb. Since θ is symmetric,
so yθx and vθu, whence y ⊕ v θswx ⊕ u, i.e., for all b ∈ y ⊕ v, there
exists a ∈ x⊕ u, such that aθb. This implies that x⊕ u θ y ⊕ v, i.e., θ
is compatible. �

In virtue of Definition 3.3 and Proposition 3.7, we define three types
of congruences in H.

Definition 3.8. Let θ be an equivalence relation in H that satisfies
(3.1). θ is called a:

• strong congruence, if it is strongly compatible.
• congruence, if it is compatible.
• weak congruence, if it is weakly compatible.

Corollary 3.9. Let θ be an equivalence relation in H. θ is a congru-
ence, if and only if it satisfies (3.1) and (3.2).

Example 3.10. (i) Obviously, in any HvMV-algebra H, ∇H is a strong
congruence in H.
(ii) Let H = {0, a, b, 1}, and let the operations ⊕ and ∗ be defined as
shown in Table 1. Then (H;⊕,∗ , 0) is a proper HvMV-algebra (see [1]).

Let θ = {(0, 0), (a, a), (b, b), (1, 1), (a, b), (b, a)}. Obviously, θ is an
equivalence relation in H, which satisfies (3.1). Also it is easily verified
that θ is weakly compatible. Hence, θ is a weak congruence in H.
(iii) Let H = {0, a, b, c, 1}, and consider Table 2. Then (H;⊕,∗ , 0) is
an HvMV-algebra (see [1]). Let

θ = {(0, 0), (a, a), (b, b), (c, c), (1, 1), (a, b), (b, a), (a, c), (c, a), (b, c),

(c, b), (0, 1), (1, 0)}.
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⊕ 0 a b 1
0 {0,a} {0,a,b} {0,a,b} {0,a,b,1}
a {0,a,b,1} {0,b} {0,1} {a,b,1}
b {a,b} {0,a,b,1} {0} {0,a,b,1}
1 {0,a,1} {0,a,b,1} {1} {0,a,b,1}
∗ 1 b a 0

Table 1. The Cayley table of ⊕ and ∗

⊕ 0 a b c 1
0 {0} {0,a} {0,b} {0,c} {0,a,b,c,1}
a {0,a} {0,a} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
b {0,b} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1}
c {0,c} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1} {0,a,b,c,1}
1 {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
∗ 1 b a c 0

Table 2. The Cayley table of ‘⊕’ and ‘∗’

It is not difficult to verify that θ is a congruence in H.

In virtue of Remark 3.5, we can check that an analogous result holds
for strong congruences and weak congruences.

Definition 3.11. A binary relation θ in H is called regular, if x∗ ⊕
yθw{0∗} and y∗ ⊕ xθw{0∗} imply xθy.

For a congruence θ in H, let x/θ be the congruence class of x, and
H/θ = {x/θ : x ∈ H}. We define the operations ‘⊕’ and ‘∗’ on H/θ by

x/θ ⊕ y/θ = {a/θ : a ∈ x⊕ y} and (x/θ)∗ = x∗/θ.

Then we have the following theorem:

Theorem 3.12. Let H be an HvMV-algebra, and θ be a regular con-
gruence in H. Then (H/θ,⊕,∗ , 0/θ) forms an HvMV-algebra.

Proof. We first prove that ‘⊕’ and ‘∗’ are well-defined. Let x, y ∈ H
be such that x/θ = y/θ. This implies that xθy, and so x∗θy∗, whence
x∗/θ = y∗/θ. This means that (x/θ)∗ = (y/θ)∗. Let x1, x2, y1, y2 ∈ H
be such that x1/θ = y1/θ, and x2/θ = y2/θ. Then x1 ⊕ x2 θ y1 ⊕ x2,
and y1 ⊕ x2 θ y1 ⊕ y2 whence x1 ⊕ x2 θ y1 ⊕ y2, by Proposition 3.2(7).
If a/θ ∈ x1/θ ⊕ x2/θ, then a/θ = b/θ, for some b ∈ x1 ⊕ x2 and so aθb
and bθc, where c ∈ y1 ⊕ y2. Thus a/θ = c/θ ∈ y1/θ ⊕ y2/θ, proving
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x1/θ ⊕ x2/θ ⊆ y1/θ ⊕ y2/θ. In a similar way, we can prove that the
converse inclusion holds. Thus ⊕ is well-defined.

The proof of the properties (HvMV1)-(HvMV7) follows directly. The
proof of (HvMV8) follows from the regularity. �

Theorem 3.13. If θ is a regular congruence in H, 0/θ is a weak HvMV-
ideal of H.

Proof. Let x, y ∈ H be such that x ≼ y, and y ∈ 0/θ. Then 0∗ ∈
x∗ ⊕ y ∩ y ⊕ x∗ and y/θ = 0/θ, whence:

0∗/θ ∈ x∗/θ ⊕ y/θ ∩ y/θ ⊕ x∗/θ = x∗/θ ⊕ 0/θ ∩ 0/θ ⊕ x∗/θ.

Hence, x/θ ≼ 0/θ, and so x/θ = 0/θ means that x ∈ 0/θ.
Now, let x, y ∈ 0/θ. Then xθ0 and 0θy, and so x ⊕ y θ 0 ⊕ y, and

0 ⊕ y θ 0 ⊕ 0, whence x ⊕ yθ0 ⊕ 0. Since 0 ∈ 0 ⊕ 0, so there exists
a ∈ x⊕ y, such that aθ0, i.e., a ∈ 0/θ, and so x⊕ y ∩ 0/θ ̸= ∅, whence
x⊕ y ≼ 0/θ, proving that 0/θ is a weak HvMV-ideal of H. �

Open Problem 3.14. Let I be a (weak) HvMV-ideal of H. Is there a
congruence θ in H, such that 0/θ = I?

The next theorem is easily proved, and so the proof is omitted.

Theorem 3.15. If θ is a regular congruence in H, the mapping ♮ :
H −→ H/θ with ♮(x) = x/θ is an epimorphism with ker♮ = 0/θ.

The mapping ♮ is called the canonical epimorphism.

Theorem 3.16. If θ is a regular congruence in H, and f : H −→ K is
a homomorphism of HvMV-algebras, such that 0/θ ⊆ kerf , there exists
a unique homomorphism f̄ : H/θ −→ K, such that f̄(a/θ) = f(a), for
all a ∈ H, Imf̄ = Imf , and kerf̄ = kerf/θ. f̄ is an isomorphism, if
and only if f is onto and kerf = 0/θ.

Proof. We first prove that f̄ is well-defined. Let a, b ∈ H be such
that a/θ = b/θ. Then 0∗/θ ∈ a∗/θ ⊕ b/θ ∩ b/θ ⊕ a∗/θ. This implies
that x/θ = 0∗/θ = y/θ, for some x ∈ a∗ ⊕ b and y ∈ b ⊕ a∗ whence
x∗, y∗ ∈ 0/θ ⊆ kerf , i.e., f(x∗) = f(0) = f(y∗). Hence,

0∗ = f(0∗) = f(x) ∈ f(a)∗ ⊕ f(b)

and similarly, 0∗ ∈ f(b) ⊕ f(a)∗, and hence, f(a) ≼ f(b). In a similar
way, we can show that f(b) ≼ f(a). Thus f̄(a/θ) = f(a) = f(b) =
f̄(b/θ), i.e., f̄ is well-defined. Obviously, f̄ is a homomorphism, and
Imf̄ = Imf . Now,

a/θ ∈ kerf̄ ⇒ f(a) = f̄(a/θ) = 0 ⇒ a ∈ kerf ⇒ a/θ ∈ kerf/θ,
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whence kerf̄ ⊆ kerf/θ. Conversely, if a/θ ∈ kerf/θ, so a/θ = b/θ, for
some b ∈ kerf , and hence, f(a) = f̄(a/θ) = f̄(b/θ) = f(b) = 0, i.e.,
a ∈ kerf . This implies that kerf/θ ⊆ kerf̄ , proving kerf̄ = kerf/θ.
f̄ is unique, because it is determined completely by f .

Finally, f̄ is an isomorphism, if and only if it is an epimorphism and
a monomorphism. Obviously, f̄ is an epimorphism, if and only if f is
an epimorphism, and by Theorem 2.6, f̄ is a monomorphism, if and
only if kerf/θ = kerf̄ = {0/θ}, i.e., if and only if kerf = 0/θ. �
Corollary 3.17. (Fundamental Homomorphism Theorem) Let θ be a
regular congruence in H. Then every homomorphism f : H −→ K
of HvMV-algebras induces an isomorphism H/θ ≃ Imf , where 0/θ =
kerf .

Proof. Since f : H −→ Imf is an epimorphism, and kerf = 0/θ, so,
by Theorem 3.16, the mapping f̄ : H/θ −→ Imf with a/θ 7→ f(a) is
an isomorphism. �
Corollary 3.18. Let θ and ϑ be the regular congruences in HvMV-
algebras H and K, respectively, and let f : H −→ K be a homo-
morphism with f(0/θ) ⊆ 0/ϑ. Then f induces a homomorphism f̄ :
H/θ −→ K/ϑ with f̄(a/θ) = f(a)/ϑ. f̄ is an isomorphism, if and
only if Imf/ϑ = K, and f−1(0/ϑ) ⊆ 0/θ.

Proof. Obviously, the composition H
f−→ K

♮−→ K/ϑ is a homomor-
phism, and 0/θ ⊆ f−1(0/ϑ) = ker♮f because:

x ∈ ker♮f ⇔ ♮f(x) = 0/ϑ ⇔ f(x)/ϑ = 0/ϑ ⇔ f(x) ∈ 0/ϑ

⇔ x ∈ f−1(0/ϑ).

Now, by Theorem 3.16, for ♮f instead of f , and K/ϑ instead of K, the
mapping H/θ −→ K/ϑ with a/θ 7→ (♮f)(a) = f(a)/ϑ is a homomor-
phism, which is an isomorphism, if and only if ♮f is an epimorphism
and ker♮f = 0/θ. But ker♮f = 0/θ, if and only if f−1(0/ϑ) ⊆ 0/θ.
Now, assume that ♮f is an epimorphism, and x ∈ K. Then x/ϑ ∈ K/ϑ,
and so x/ϑ = ♮f(h) = f(h)/ϑ, where h ∈ H. This implies that
x ∈ f(h)/ϑ, whence K ⊆ Imf/ϑ. Obviously, Imf/ϑ ⊆ K. Hence,
K = Imf/ϑ. Conversely, assume that K = Imf/ϑ, and x/ϑ ∈ K/ϑ.
Then x ∈ K, and so x/ϑ = f(a)/ϑ = ♮f(a), for some a ∈ H, proving
♮f is onto. Particulary, if f is onto, Imf = K, and so Imf/ϑ = K.

�
Let θ and ϑ be regular congruences in H such that ϑ ⊆ θ. Define a

binary relation θ/ϑ in H/ϑ by

a/ϑ(θ/ϑ)b/ϑ ⇔ aθb.
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It is obvious that θ/ϑ is a regular congruence in H/ϑ.

Corollary 3.19. Let θ and ϑ be regular congruences in H and ϑ ⊆ θ.
Then (H/ϑ)/(θ/ϑ) ≃ H/θ.

Proof. Obviously, the mapping f : H/ϑ −→ H/θ with f(a/ϑ) = a/θ is
an epimorphism, and

kerf = {a/ϑ : a/θ = f(a/ϑ) = 0/θ} = {a/ϑ : aθ0}
= {a/ϑ : a/ϑ(θ/ϑ)0/ϑ}
= 0/(θ/ϑ)

whence, by Corollary 3.17, (H/ϑ)/(θ/ϑ) ≃ Imf = H/θ. �

4. Fundamental MV-algebras

In this section, we introduce the concept of fundamental relation on
HvMV-algebras. We first give an application of strong congruences.

Theorem 4.1. If θ is a regular strong congruence in H, (H/θ,⊕,∗ , 0/θ)
is an MV-algebra.

Proof. In virtue of Theorem 3.12, it is enough to prove that, for all
x, y ∈ H, the set x/θ ⊕ y/θ is singleton. Let a/θ, b/θ ∈ x/θ ⊕ y/θ.
Then there exist c, d ∈ x ⊕ y, such that a/θ = c/θ and b/θ = d/θ.
Since θ is reflexive, so xθx and yθy, whence x⊕ yθsx⊕ y. This implies
that cθd, i.e., a/θ = c/θ = d/θ = b/θ, proving |x/θ ⊕ y/θ| = 1. �

Let Ups and Usp be the set of all finite sums of finite products and the
set of all finite products of finite sums of the elements of H, respectively,
and let U = Ups ∪ Usp. Define a binary relation γ in H by

aγb, if and only if {a, b} ⊆ u, for some u ∈ U .
It is obvious that γ is reflexive and symmetric.

Define a binary relation γ∗ in H by aγ∗b, if and only if there exist
n ∈ N, and z1, z2, . . . , zn+1 ∈ H, such that a = z1, b = zn+1, and for all
i ∈ {1, 2, . . . , n}, {zi, zi+1} ⊆ ui, for some ui ∈ U .

Theorem 4.2. The relation γ∗ is an equivalence relation in H.

Proof. Let a ∈ H. From a ∈ a ⊙ 1, for n = 2, z1 = z2 = a, and
u = (0 ⊙ 1) ⊕ (a⊙ 1), we get

{a} ⊆ a⊙ 1 ⊆ 0 ⊕ (a⊙ 1) ⊆ (0 ⊙ 1) ⊕ (a⊙ 1) = u,

whence aγ∗a, i.e., γ∗ is reflexive. Now, let a, b ∈ H be such that
aγ∗b. Then there exist n ∈ N, z1, z2, . . . , zn+1 ∈ H, such that a = z1,
b = zn+1, and for all i ∈ {1, 2, . . . , n}, {zi, zi+1} ⊆ ui, where ui ∈ U .
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Let yi = zn−i+2, for all i ∈ {1, 2, . . . , n}. Then y1 = b, yn+1 = a,
and {yi, yi+1} ⊆ vi, where vi = un−i+1 ∈ U , proving bγ∗a, i.e. γ∗ is
symmetric. For transitivity, let aγ∗b and bγ∗c, for a, b, c ∈ H. Then
there exist n,m ∈ N, z1, . . . , zn+1, w1, . . . , wm+1 ∈ H, such that a = z1,
zn+1 = b = w1, c = wm+1, and {zi, zi+1} ⊆ ui and {wj, wj+1} ⊆ vj,
where ui, vj ∈ U , for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2 . . . ,m}. Let
xi = zi, for i ∈ {1, 2, . . . , n}, and xi = wj, where i = n + j, for
j ∈ {1, 2, . . . ,m}. Then a = x1, c = xm+1 and {xi, xi+1} ⊆ ri, where
ri ∈ U . Thus γ∗ is an equivalence relation in H. �
Theorem 4.3. γ∗ is the smallest regular strong congruence in H with
the property that H/γ∗ is an MV-algebra.

Proof. In virtue of Theorem 3.4 and Remark 3.5, to prove that γ∗ is a
strong congruence, it is enough to prove that (3.1) holds, and for all
x, y, a ∈ H,

xγ∗y implies that x⊕ aγ∗
sy ⊕ a, and a⊕ xγ∗

sa⊕ y.

Assume that xγ∗y, for x, y ∈ H. Then there exist n ∈ N, a1, . . . , an+1 ∈
H, such that x = a1, y = an+1, and for all i ∈ {1, 2, . . . , n}, {ai, ai+1} ⊆
ui, for some ui ∈ U . This implies that x∗ = a∗1, y∗ = a∗n+1, and
{a∗i , a∗i+1} ⊆ u∗

i ∈ U , whence x∗γ∗y∗. Thus (3.1) holds. Also, if a ∈ H,
for si ∈ ai ⊕ a, we have:

{si, si+1} ⊆ (ai ⊕ a) ∪ (ai+1 ⊕ a) ⊆ ui ⊕ a ⊆ ui ⊕ (a⊙ 1) = vi ∈ U
or {si, si+1} ⊆ ui ⊕ a ⊆ ui ⊙ (a⊕ 0) ∈ U . Thus for s1 ∈ x⊕ a = a1 ⊕ a
and sn+1 ∈ y ⊕ a = an+1 ⊕ a, we have s1γ

∗sn+1. This implies that
x⊕aγ∗

sy⊕a. Similarly, we can show that xγ∗y implies that a⊕xγ∗
sa⊕y.

Thus γ∗ is a strong congruence in H.
For regularity, assume that x∗⊕yγ∗

w{0∗}, and y∗⊕xγ∗
w{0∗}, for x, y ∈

H. Then (x∗⊕y)∗γ∗
w{0}, and (y∗⊕x)∗γ∗

w{0}, and so (x∗⊕y)∗⊕yγ∗
s0⊕y,

and (y∗ ⊕ x)∗ ⊕ xγ∗
s0 ⊕ x, whence 0 ⊕ xγ∗

s0 ⊕ y. Since y ∈ 0 ⊕ y and
x ∈ 0 ⊕ x, so xγ∗y proving γ∗ is regular. Therefore, γ∗ is a regular
strong congruence in H, and H/γ∗ is an MV-algebra.

Now, let δ be a regular strong congruence in H with the property
that H/δ is an MV-algebra, and xγy, for x, y ∈ H. Then {x, y} ⊆
u ∈ U . Assume that u = ⊕n

i=1(⊙m
j=1xij), where xij ∈ H. Since δ is

a strong congruence, so u/δ = ⊕n
i=1(⊙m

j=1xij/δ) is singleton, and since
x/δ, y/δ ∈ u/δ implies that x/δ = y/δ, i.e., xδy. Hence, γ ⊆ δ. Now,
if xγ∗y, there exist n ∈ N and a1, a2, . . . , an+1 ∈ H, such that x = a1,
y = an+1 and aiγai+1, whence aiδai+1. Since δ is transitive, so xδy,
proving γ∗ ⊆ δ. Therefore, γ∗ is the smallest regular strong congruence
in H, such that H/γ∗ is an MV-algebra. �
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Remark 4.4. The relation γ∗ is called the fundamental relation in H,
and H/γ∗ is called the fundamental MV-algebra.

5. Direct products

In this section, we define the direct product of a family of HvMV-
algebras, characterize the HvMV-subalgebras and (weak) HvMV-ideals
of it, and give some homomorphism theorems.

Let {(Hi;⊕i,
∗i , 0i) : i ∈ I} be a non-empty family of HvMV-algebras.

The cartesian product
∏

i∈I Hi of Hi’s is defined as the set of all func-
tions f : I −→ ∪Hi with f(i) ∈ Hi, for all i ∈ I. For f, g ∈

∏
i∈I Hi,

define f = g, if and only if f(i) = g(i), for all i ∈ I, and

f ∗(i) = f(i)∗i and (f ⊕ g)(i) = f(i) ⊕i g(i), ∀i ∈ I.

Also define 0(i) = 0i, for all i ∈ I. It is easy to check that
∏

i∈I Hi

together with ‘⊕’, ‘∗’ satisfies (HvMV1)-(HvMV8). Thus we get

Theorem 5.1. If {(Hi;⊕i,
∗i , 0i) : i ∈ I} is a non-empty family of

HvMV-algebras;

(1) (
∏

i∈I Hi;⊕,∗ , 0) is an HvMV-algebra,
(2) for each k ∈ I, the mapping πk :

∏
i∈I Hi −→ Hk with f 7→ f(k)

is an epimorphism.∏
i∈I Hi is called the direct product of Hi’s. If Hi is an HvMV-algebra

with the order ≼i, the order on
∏

i∈I Hi is given by f ≼ g, if and only
if f(i) ≼i g(i).

The image of f can be written as {ai}, where ai ∈ Hi. In this
case, the hyperoperation ‘⊕’ is written as {ai} ⊕ {bi} = {ai ⊕i bi}. If
I = {1, 2, . . . , n} is finite,

∏
i∈I Hi is written as H1 ×H2 × · · · ×Hn.

In the sequel, in this section, {Hi : i ∈ I} is a non-empty family of
HvMV-algebras, and

∏
i∈I Hi is the direct product of Hi’s.

Theorem 5.2. Let Hi be an HvMV-algebra, and Si be a non-empty
subset of Hi with i ∈ I.

(1) If Si is an HvMV-subalgebra,
∏

i∈I Si is an HvMV-subalgebra of∏
i∈I Hi.

(2) If Si is an HvMV-ideal,
∏

i∈I Si is an HvMV-ideal of
∏

i∈I Hi.
(3) If Si is a weak HvMV-ideal,

∏
i∈I Si is a weak HvMV-ideal of∏

i∈I Hi.

Proof. Routine. �

Theorem 5.3. Let Hi (i ∈ I) be an HvMV-algebra and S be a non-
empty subset of

∏
i∈I Hi.
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(1) If S is an HvMV-subalgebra, there exists unique HvMV-subalgebra
Si of Hi, for all i ∈ I, such that S =

∏
i∈I Si.

(2) If S is an HvMV-ideal, there exists unique HvMV-ideal Si of Hi,
for all i ∈ I, such that S =

∏
i∈I Si.

(3) If S is a weak HvMV-ideal, there exists unique weak HvMV-ideal
Ii of Hi, for all i ∈ I, such that S =

∏
i∈I Si.

Proof. We first observe that if S is a non-empty subset of
∏

i∈I Hi, for

Si = {ai ∈ Hi : ∃f ∈ S, such that f(i) = ai},

we get
∏

i∈I Si = S.
(1) Assume that S is an HvMV-subalgebra of

∏
i∈I Hi. We show that

Si is an HvMV-subalgebra of Hi. Obviously, Si ̸= ∅ because 0i ∈ Si, for
all i ∈ I. Let ai, bi ∈ Si, for i ∈ I. Then there exist f, g ∈ S, such that
f(i) = ai and g(i) = bi, whence a∗ii ⊕i bi = f ∗i(i)⊕i g(i) = (f ∗⊕g)(i) ⊆
Si, proving Si is an HvMV-subalgebra of Hi.

Now, let Ti be an HvMV-subalgebra of Hi, for all i ∈ I, such that
S =

∏
i∈I Ti. We show that Ti = Si, for all i ∈ I. Let ai ∈ Hi. Then

ai ∈ Ti, if and only if there exists f ∈
∏

i∈I Ti = S =
∏

i∈I Si such
that f(i) = ai, if and only if ai ∈ Si means that Ti = Si.

(2) By (1), Si is closed with respect to ⊕i, for all i ∈ I. Now, let
ai ≼i bi and bi ∈ Si. Let f, g ∈

∏
i∈I Hi be such that f(i) = ai, and

g(i) = bi. Then:

0∗i
i ∈ a∗ii ⊕i bi ∩ bi ⊕i a

∗i
i = f ∗i(i) ⊕i g(i) ∩ g(i) ⊕i f

∗i(i)

= (f ∗ ⊕ g)(i) ∩ (g ⊕ f ∗)(i)

whence 0∗ ∈ f ∗ ⊕ g ∩ g ⊕ f ∗, i.e. f ≼ g ∈
∏

i∈I Si = S. Since S is an
HvMV-ideal, so f ∈ S, and hence, ai = f(i) ∈ Si. The uniqueness is
proved similar to the proof of (1).

(3) The proof is similar to the proof of (2). �

Definition 5.4. Let {Hi : i ∈ I} be a non-empty family of HvMV-
algebras. The weak direct product of Hi’s, denoted by

∏w
i∈I Hi, is de-

fined as the set of all f ∈
∏

i∈I Hi, such that for all but a finite number
of i ∈ I, we have f(i) = 0i.

Remark 5.5. Note that when I is finite, the weak direct product and
direct product are equal.

Theorem 5.6. Let {Hi : i ∈ I} be a non-empty family of HvMV-
algebras.

(1) If 0i ⊕ 0i = {0i}, for all i ∈ I,
∏w

i∈I Hi is an HvMV-ideal of∏
i∈I Hi.
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(2) the mapping ιk : Hk −→
∏w

i∈I Hi given by ιk(a) = {ai}i∈I , in
which ak = a and ai = 0i, for all i ̸= k, is a weak monomor-
phism.

(3) If 0i ⊕ 0i = {0i}, for all i ∈ I, ιi(Hi) is an HvMV-ideal of∏w
i∈I Hi.

Proof. (1) Let f, g ∈
∏

i∈I Hi be such that f ≼ g, and g ∈
∏w

i∈I Hi.
Then f(i) ≼i g(i) and g(i) = 0i, for all but a finite number of i ∈
I whence 0∗i

i ∈ f ∗i(i) ⊕i g(i) ∩ g(i) ⊕i f
∗i(i). Now, for i ∈ I with

g(i) = 0i, we have 0∗i
i ∈ f ∗i(i) ⊕i 0i ∩ 0i ⊕i f

∗i(i), which implies that
f(i) ≼i 0i, i.e., f(i) = 0i, proving f ∈

∏w
i∈I Hi. Let f, g ∈

∏w
i∈I Hi.

Then f(i) = 0i and g(j) = 0j, for all but a finite number of i, j ∈ I.
Let k ∈ I be the smallest element, for which f(k) = g(k) = 0k. Then
(f ⊕ g)(k) = f(k)⊕k g(k) = 0k ⊕ 0k = {0k}, for all but a finite number
of k ∈ I. Thus f ⊕ g ⊆

∏w
i∈I Hi. Therefore,

∏w
i∈I Hi is an HvMV-ideal

of
∏

i∈I Hi.
(2) Let a ∈ Hk. Then ιk(a∗k) = {ai}i∈I in which ak = a∗k and ai = 0i,

for all i ̸= k. On the other hand, ιk(a)∗ = {ai}∗i∈I = {a∗ii }i∈I , in which
a∗kk = a∗k and a∗ii = 1, for all i ̸= k. This implies that ιk(a∗k) ≼ ιk(a)∗i .
Now, let a, b ∈ Hi. Then:

ιk(a⊕k b) = {ιk(c) : c ∈ a⊕k b}
= {{ai}i∈I : ak = c ∈ a⊕k b, ai = 0i,∀i ̸= k}
⊆ {ai ⊕ bi} with ak = a, bk = b, ai = bi = 0i, ∀i ̸= k

= {ai}i∈I ⊕ {bi}i∈I with ak = a, bk = b, ai = bi = 0i,∀i ̸= k

= ιk(a) ⊕ ιk(b)

proving that ιk is a weak homomorphism. Obviously, ιk is one-to-one.
(3) Let {ai} ≼ {bi}, and {bi} ∈ ιk(Hk). Then 0∗ ∈ {ai}∗ ⊕ {bi} ∩

{bi} ⊕ {ai}∗, and bk = a ∈ Hk and bi = 0i, for all i ̸= k, whence
0∗i
i ∈ a∗ii ⊕i bi, bk = a, and bi = 0i, for all i ̸= k. This implies that

0∗i ∈ a∗ii ⊕i 0i, for all i ̸= k, and hence, ai ≼ 0i, i.e., ai = 0i, for
all i ̸= k. Thus {ai} ∈ ιk(Hk). Now, let {aj}, {bj} ∈ ιi(Hi). Then
aj = bj = 0j, for all j ̸= i, and so, {aj} ⊕ {bj} = {aj ⊕j bj} in which
aj ⊕j bj = 0j ⊕j 0j = {0j}, proving {aj} ⊕ {bj} ⊆ ιi(Hi). �
Theorem 5.7. Let {fi : Hi −→ Ki : i ∈ I} be a non-empty fam-
ily of homomorphisms of HvMV-algebras, and the mapping f =

∏
fi :∏

i∈I Hi −→
∏

i∈I Ki be given by {ai} 7→ {fi(ai)}. Then f is a ho-
momorphism such that f(

∏w
i∈I Hi) ⊆

∏w
i∈I Ki, kerf =

∏
i∈I kerfi and

Imf =
∏

i∈I Imfi. Thus f is a monomorphism (resp. an epimorphism)
if and only if so is each fi.

Proof. Routine. �
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Theorem 5.8. Let {Hi : i ∈ I} be a non-empty family of HvMV-
algebras, and β∗i

i be the fundamental equivalence relation in Hi, for all
i ∈ I, and β∗ be the fundamental equivalence relation in

∏
i∈I Hi. Then

(
∏

i∈I Hi)/β
∗ ≃

∏
i∈I Hi/β

∗i
i .

Proof. Consider the relation β̃ in
∏

i∈I Hi, as follows:

{ai}β̃{bi} ⇔ aiβ
∗i
i bi, ∀i ∈ I.

Obviously, β̃ is a congruence relation in
∏

i∈I Hi. To prove regularity,

let {ai}, {bi} ∈
∏

i∈I Hi be such that {ai}∗ ⊕ {bi}β̃{{0i}} and {bi}∗ ⊕
{ai}β̃{{0i}}. Then {a∗ii ⊕i bi}β̃{{0i}} and {b∗ii ⊕i ai}β̃{{0i}}, whence

{ci}β̃{0i} and {di}β̃{0i}, for all ci ∈ a∗ii ⊕i bi and di ∈ b∗ii ⊕i ai. Hence,
ciβ

∗i
i 0i and diβ

∗i
i 0i, i.e., a∗ii ⊕i biβ

∗i
i {0i} and b∗ii ⊕i aiβ

∗i
i {0i}, whence

aiβ
∗i
i bi, proving {ai}β̃{bi}.

Now, define ‘∗’ and ‘⊕’ on (
∏

i∈I Hi)/β̃ by

({ai}/β̃)∗ = {a∗ii }/β̃, {ai}/β̃⊕{bi}/β̃ = {{ci}/β̃ : ci ∈ ai/β
∗i⊕ibi/β

∗i}.

It is easy to check that β̃ is the smallest regular congruence relation in∏
i∈I Hi, such that (

∏
i∈I Hi)/β̃ is an HvMV-algebra, so β̃ = β∗.

Now, by Theorem 3.15, the mapping ♮i : Hi −→ Hi/β
∗i
i is an epimor-

phism with ker♮i = 0i/β
∗i
i and so, by Theorem 5.7,

∏
♮i :

∏
i∈I Hi −→∏

i∈I Hi/β
∗i
i is an epimorphism with

ker(
∏

♮i) =
∏
i∈I

ker♮i =
∏
i∈I

0i/β
∗i
i = 0/β∗.

Thus, by Corollary 3.17, (
∏

i∈I Hi)/β
∗ ≃

∏
i∈I Hi/β

∗i
i . �

6. Conclusions and the future works

Based on the first work on HvMV-algebras, in this paper, we intro-
duced some types of congruences, studied the quotient HvMV-algebra,
and obtained some homomorphism theorems. Moreover, we obtained
the fundamental equivalence relation on an HvMV-algebra, the small-
est equivalence relation on an HvMV-algebra to make it to an MV-
algebra. Finally, we introduced the direct product of a non-empty
family of HvMV-algebras. We proved that the direct product of a fam-
ily of HvMV-subalgebras (HvMV-ideals, weak HvMV-ideals) is again an
HvMV-subalgebra (HvMV-ideal, weak HvMV-ideal). Also we character-
ized the HvMV-subalgebras (HvMV-ideals, weak HvMV-ideals) of the
direct product of a family of HvMV-algebras via the HvMV-subalgebras
(HvMV-ideals, weak HvMV-ideals) of any member of the family. Then
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using the fundamental equivalence relation, we obtained some homo-
morphism theorems.

The category of HvMV-algebras and fuzzy HvMV-ideals could be the
topics for further research works.
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M. BAKHSHI

٢ HvMV-جبرها

بخشی محمود
بجنورد دانشگاه ریاضی گروه

ساختار که ترتیب این به دهیم. می ادامه را HvMV-جبرها مورد در تحقیق مقاله، این در
چند همچنین آوریم. می بدست را مرتبط نتایج و خواص برخی و مطالعه را آنها قسمتی خارج
نیز و معرفی را اساسی HvMV-جبرهای بعلاوه کنیم. می اثبات و بیان را همریختی قضیه

دهیم. می ارائه را آنها با مرتبط نتایج و بررسی را ها HvMV-جبر مستقیم حاصلضرب

اساسی. MV-جبر HvMV-جبر، جبر، -MV کلیدی: کلمات
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