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H,MV-ALGEBRAS II
M. BAKHSHI

ABSTRACT. In this paper, we continue our study on HvMV-algebras.
The quotient structure of an HvMV-algebra by a suitable type of
congruence is studied, and some properties and related results are
given. Some homomorphism theorems are given, as well. Also the
fundamental HvMV-algebra, and the direct product of a family
of HvMV-algebras are investigated, and some related results are
obtained.

1. INTRODUCTION

In 1958, Chang [?] introduced the concept of an MV-algebra as an al-
gebraic proof of completeness theorem for Ny-valued Lukasiewicz propo-
sitional calculus; also see [3]. Many mathematicians have worked on
MV-algebras, and obtained significant results. The hyperstructure the-
ory (also called multialgebras) was introduced in 1934 by Marty [9].
Around the 40’s, several authors worked on the hypergroups, espe-
cially in France and in the United States, but also in Italy, Russia, and
Japan.

Recently, Ghorbani et al. [7] have applied the hyperstructures to
MV-algebras, introduced the concept of hyper MV-algebra and investi-
gated some related results; also see [, 10]. Hyperstructures have many
applications to several sectors of both the pure and applied sciences.
A short review of the theory of hyperstructures has appeared in [1]. In
[0], a wealth of applications can also be found. There are applications
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to the following subjects: geometry, hypergraphs, binary relations, lat-
tices, fuzzy set and rough sets, automata, cryptography, combinatorics,
codes, artificial intelligence, and probabilities.

H,-structures were introduced by Vougiouklis in the 4th AHA con-
gress [ 1]; also see [12] and [13]. The concept of H,-structure constitute
a generalization of the well-known algebraic hyperstructures (hyper-
group, hyperring, hypermodule, and so on). Actually, some axioms
concerning the above hyperstructures such as the associative law, and
distributive law have been replaced by their corresponding weak ax-
ioms. The reader finds in [12] some basic definitions and theorems
about H,-structures. Since then, the study of the H,-structure theory
has been pursued in many directions by Vougiouklis, Davvaz, Spar-
talis and others. A survey of the most results and applications of H,-
structure theory is based up on many papers, some of which contain
more detailed presentations (see [0]).

In this paper, the quotient structure of H,MV-algebras, direct prod-
uct of H,MV-algebras, and their direct product are introduced, and
their properties are investigated, as mentioned in the abstract.

2. PRELIMINARIES

This section is devoted to give some preliminaries from the literature
For more details, we refer to the references.

Definition 2.1. An MV-algebra is an algebra (M;+,*,0) of type (2,1,0),
satisfying the following properties:

(MV1) + is associative,

(MV2) + is commutative,

(MV3) z+0 =z,

(MV4) (2°)° =z,

(MV5) =+ 0* =07,

(MV6) (z*+y) +y=(u +2) +=x

On any MV-algebra M, a binary relation ‘<’ can be defined as z < y,
if and only if 2* +y = 0*. Then < is a partial ordering in M.

In this section, the concept of an H,MV-algebra is introduced, and
some basic results are given.

Definition 2.2. An H,MV-algebra is a non-empty set, H endowed with
a binary hyperoperation ‘@’, a unary operation “*’, and a constant, ‘0’
satisfying the following conditions:
(HMV1) 2@ (y@2)N(zDy) ®z # 0, (weak associativity)
(HMV2) z@ynydax #0, (weak commutativity)
(H,MV3) (z*)" ==,
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(H,MV4) (z*®y) @yn(y* ) &z #0,

(H,MV5) 0* € 2 ®0*N0* @ x,

(H,MV6) 0" € 2@ " Na* &,

(HMVT) z2€200N0® z,

(H,MV8) 0* e z*®dyNydx* and 0* € y* DNz dy* imply z = y.

Remark 2.3. On any H,MV-algebra H, we can define a binary relation
cju by
r=y & 0"er"dynyda”.
Hence, the condition (H,MV8) can be redefined as follows:
r =<yandy <X ximply xr = y.

Let A and B be non-empty subsets of H. By A < B, we mean that
there exist a € A, and b € B, such that a < b. For A C H, denote the
set {a* : a € A} by A* and 0* by 1.

On H, we define a hyperoperation ‘©@" as x ©® y = (z* @ y*)*. The
next theorem gives some properties.

Proposition 2.4. In any H,MV-algebra H, the following hold: Vx,y €
H and VA,B C H,

Dzoyoz)N(zoy) ©z#0,

2)zoynyo©x #0,

3)0€ezo0N0O,

4) 0z Na* O,

B)rerzolnlour,

Definition 2.5. Let (H;®,*,0g), and (K;®,*,0x) be H,MV-algebras,
and let f: H — K be a function satisfying the following conditions:

f is called a homomorphism, if it satisfies the conditions (1), (2),
and (4); it is called a weak homomorphism if it satisfies the conditions
(1), (3), and (5), Clearly, if f is a homomorphism, f(1) = 1. For
convenience, we use the same operations for H and K.

By kerf, we mean the set {x € H : f(z) = 0}. As usual, a homo-
morphism that is one-to-one (resp. onto) is called a monomorphism
(resp. epimorphism). A homomorphism which is both an epimorphism
and a monomorphism is called an isomorphism. If f : H — K is
an isomorphism, we say that H and K are isomorphic, and we write
H~K.
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Theorem 2.6. Let f: H — K be a homomorphism.
(1) fis one-to-one, if and only if ker f = {0}.
(2) fis an isomorphism, if and only if there exists a homomorphism
f': K — H, such that ff~' =1g and f~'f = 1y.

Definition 2.7. A non-empty subset S of H is called an H,MV-subalgebra
of H,if (S;®,*,0) is itself an H,MV-algebra.

The next proposition gives an equivalent condition for an H,MV-
subalgebra.

Proposition 2.8. A nonempty subset S of H is an H,MV-subalgebra
of H if and only if

(1) z@y CS, forallz,y €S,

(2) z* € S, forallz € S.

Corollary 2.9. A non-empty subset S of H is an H,MV-subalgebra, if
and only if

(1) 0 e S,

(2) 2y C S, forallz,y € S.

Definition 2.10. Let I be a non-empty subset of H, satisfying
(ly). = = y,and y € [ imply x € I.
Then [ is called
(1) an H,MV-ideal, if x y C I, for all z,y € I,
(2) a weak H,MV-ideal, if  ®y <X I, for all z,y € I.

It is easy to see that, in any H,MV-algebra H, {0} is a weak H,MV-

ideal, and obviously, H is an H,MV-ideal of H. Also, every H,MV-ideal
is a weak H,MV-ideal.

Theorem 2.11. Let f: H — K be a homomorphism.
(1) kerf is a weak H,MV-ideal of H.
(2) If I is an H,MV-ideal of K, f~1(I) is an H,MV-ideal of H.
From now on, in this paper, H is denoted by an H,MV-algebra, unless
otherwise stated.

3. QUOTIENT STRUCTURES

In this section, it is shown that how we can construct the quotient
H,MV-algebra from the old one, and some homomorphism theorems
are stated and proved. We start with a definition.

Definition 3.1. Let 6 be a binary relation in H, and A, B C H. We
say that
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(1) AbsB, if for all a € A, and for all b € B, afb,

(2) AOB, if for all a € A, there exists b € B, and for all b € B,
there exists a € A, such that afb,

(3) Ab,, B, if for all a € A there exists b € B, such that afb,

(4) A0, B, if there exist a € A, and b € B, such that afb.

Obviously, 8, C 0 C 0y, C 0,,.
It must be noticed that when A and B are singleton, § = 0, = 0, =
0.

Proposition 3.2. Let 6 be a transitive relation in H, and A, B,C' C H.

) If A0,B and B0, C, then A0,,C.
2) If Ay, B and Bb,C, then Abg,C.
3) If AOsB and BO,C, then A0,C.

4) If A0;B and Bb,C, then Ab,C.
5) If A6sB and B6,,C, then Ab,C.
6) If AOsB and BOC, then AOC.
(7) If AOB and BOC, then AOC.

Proof. Routine. U

(1
(
(
(
(
(

Definition 3.3. Let 6 be a binary relation in H with the property
xfy implies that z*0y*. (3.1)
6 is said to be

strongly compatible, if 0y and ubv imply that x & u 0,y S v.
compatible, if 0y and ubv imply that x & u dy O v.

s~weak compatible, if 6y and ufv imply that x & u O,y D v.
weakly compatible, if x0y and ufv imply that © ® u 0,y P v.

It is clear that every strongly compatible relation is compatible, every
compatible relation is s-weak compatible, and every s-weak compatible
relation is weakly compatible.

Theorem 3.4. Let 0 be a reflexive and transitive binary relation in H.
Then 0 is compatible, if and only if (3.1) holds, and,

x0y implies that x ®a 0 yPDa and ad x 0 a Dy, (3.2)
for all x,y,a € H.

Proof. Assume that 6 is compatible, 26y, and a € H. Since 0 is reflex-

ive, so afa, whence t a  yPDaand adx 0 a D y.
Conversely, assume that 6 satisfies (3.2), x0y, and ufv. Hence, x &
ufyduand ydu O yHv, whence, by Proposition 3.2(7), zdu 0 yDw.
O
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Remark 3.5. In virtue of Proposition 3.2, it is easy to see that an
analogous result holds for strongly compatible relations, and s-weak
compatible relations.

Proposition 3.6. Every reflexive weakly compatible relation 6 in H
satisfies:

20y implies that x ®a 0, y®a and a®x 0, a ® x. (3.3)
Proof. The proof is similar to the proof of Theorem 3.4. 0

Proposition 3.7. Let 0 be a symmetric binary relation in H. Then 0
18 compatible, if and only if it is s-weak compatible.

Proof. In virtue of the observation just after Definition 3.3, it is enough
to prove that every symmetric s-weak compatible relation is compat-
ible. Assume that 6 is a symmetric s-weak compatible, and zfy and
ubv, for x,y,u,v € H. Then z ® u O, y ® v, which means that for all
a € @ u, there exists b € y @ v, such that afb. Since 6 is symmetric,
so yfxr and vOu, whence y B v Oy,x B u, ie., for all b € y & v, there
exists a € x @ u, such that afb. This implies that xt B u 0 y D v, i.e., 6
is compatible. O

In virtue of Definition 3.3 and Proposition 3.7, we define three types
of congruences in H.

Definition 3.8. Let 6 be an equivalence relation in H that satisfies
(3.1). 0 is called a:

e strong congruence, if it is strongly compatible.

e congruence, if it is compatible.

e weak congruence, if it is weakly compatible.

Corollary 3.9. Let 6 be an equivalence relation in H. 0 is a congru-
ence, if and only if it satisfies (3.1) and (3.2).

Example 3.10. (i) Obviously, in any H,MV-algebra H, Vy is a strong
congruence in H.

(ii) Let H = {0,a,b,1}, and let the operations @ and * be defined as
shown in Table 1. Then (H;@®,*,0) is a proper H,MV-algebra (see [1]).

Let 8 = {(0,0), (a,a), (b,b),(1,1),(a,b), (b,a)}. Obviously, 6 is an
equivalence relation in H, which satisfies (3.1). Also it is easily verified
that 6 is weakly compatible. Hence, # is a weak congruence in H.

(iii) Let H = {0,a,b,c,1}, and consider Table 2. Then (H;&®,*,0) is
an H,MV-algebra (see [1]). Let

0 = {(0,0),(a;a),(b,), (¢, ), (1,1), (a,b), (b, a), (a,¢), (¢, a), (b, ¢),
(¢,0),(0,1),(1,0)}.
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0 a b 1
{0a)  {0.ab} {0.ab} {0ab)
{0,a,b,1}  {0,b} {0,1} {a,b,1}
{a,b}  {0,a,b,1} {0} {0,a,b,1}
{0,a,1}  {0,a,b,1} {1} {0,a,b,1}
1 b a 0

TABLE 1. The Cayley table of @ and *

¥ |~ o o OP

0 a b C 1
{0} {0,a} {0,b} {0,c} {0,a,b,c,1}
{O7a} {O,a} {O7a7baca1} {Ovavb?cal} {O7aabvcal}

{0,b} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1}

{0,c} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1} {0,a,b,c,1}

{0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
1 b a ¢ 0

TABLE 2. The Cayley table of ‘@’ and “*’

¥ =0 oo ofh

It is not difficult to verify that € is a congruence in H.

In virtue of Remark 3.5, we can check that an analogous result holds
for strong congruences and weak congruences.

Definition 3.11. A binary relation 6 in H is called regular, if x* &
y0.,{0*} and y* @ x0,,{0*} imply z0y.

For a congruence # in H, let x/6 be the congruence class of x, and
H/0 ={z/0 :x € H}. We define the operations ‘@’ and *’ on H/6 by

z/0®y/0={a/0:a€cxdy}and (z/0)" =z"/0.
Then we have the following theorem:

Theorem 3.12. Let H be an H,MV-algebra, and 6 be a regular con-
gruence in H. Then (H/0,®,*,0/0) forms an H,MV-algebra.

Proof. We first prove that ‘@’ and ‘x’ are well-defined. Let x,y € H
be such that x/6 = y/6. This implies that 20y, and so z*0y*, whence
x*/0 = y*/0. This means that (z/0)* = (y/0)*. Let x1,x9,91,y2 € H
be such that z1/0 = y1/0, and x5/0 = y5/0. Then x1 ® x5 0 y; © o,
and y; @ x9 0 y; @ y2 whence x1 @ x9 0 y; @ Y2, by Proposition 3.2(7).
If a/0 € x1/0 ® 22/0, then a/0 = b/0, for some b € 1 G x5 and so abb
and bfc, where ¢ € y; ® yo. Thus a/0 = ¢/0 € y1/0 B y2/0, proving
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1/0 @ x2/0 C 11/0 @ yo/0. In a similar way, we can prove that the
converse inclusion holds. Thus & is well-defined.

The proof of the properties (H,MV1)-(H,MV7) follows directly. The
proof of (H,MV8) follows from the regularity. O

Theorem 3.13. If 0 is a reqular congruence in H, 0/6 is a weak H,MV -
1deal of H.

Proof. Let z,y € H be such that * < y, and y € 0/6. Then 0* €
r*@yNy®x* and y/0 = 0/6, whence:

0°/0 € /0@y/0Ny/0ea /0 =a"/060/0N0/0& " /0.

Hence, x/6 < 0/6, and so z/0 = 0/0 means that x € 0/6.

Now, let z,y € 0/0. Then x00 and 06y, and so x ®y 6 0 ® y, and
0y 6 0d0, whence x ® yf0 d 0. Since 0 € 0 P 0, so there exists
a € x @y, such that af0, i.e., a € 0/, and so z ®y N 0/0 # (), whence
r @y =< 0/60, proving that 0/6 is a weak H,MV-ideal of H. O

Open Problem 3.14. Let I be a (weak) H,MV-ideal of H. Is there a
congruence 6 in H, such that 0/0 = I?

The next theorem is easily proved, and so the proof is omitted.

Theorem 3.15. If 6 is a reqular congruence in H, the mapping g :
H — H/0 with §(x) = /0 is an epimorphism with kerg = 0/6.

The mapping f is called the canonical epimorphism.

Theorem 3.16. If 6 is a reqular congruence in H, and f : H — K 1s
a homomorphism of H,MV-algebras, such that 0/0 C kerf, there exists
a unique homomorphism f : H/0 — K, such that f(a/0) = f(a), for
alla € H, Imf = Imf, and kerf = kerf/0. f is an isomorphism, if
and only if f is onto and kerf =0/6.

Proof. We first prove that f is well-defined. Let a,b € H be such
that a/6 = b/6. Then 0%/ € a*/0 & b/ Nb/0 © a* /0. This implies
that /0 = 0*/0 = y/6, for some x € a* ® b and y € b ® a* whence
z*,y*€0/0 C kerf,ie., f(z*) = f(0) = f(y*). Hence,

0" = f(07) = f(z) € f(a)" @ f(b)

and similarly, 0* € f(b) @ f(a)*, and hence, f(a) < f(b). In a similar
way, we can show that f(b) < f(a). Thus f(a/0) = f(a) = f(b) =
f(b/0), ie., fis well-defined. Obviously, f is a homomorphism, and
Imf = Imf. Now,

a/0 € kerf = f(a) = f(a/§) =0=a € kerf = a/0 € kerf/0,
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whence ker f C kerf /6. Conversely, if a/0 € kerf/6, so a/0 = b/6, for
some b € kerf, and hence, f(a) = f(a/) = f(b/0) = f(b) =0, i.e.,
a € kerf. This implies that kerf/0 C kerf, proving kerf = kerf /0.
f is unique, because it is determined completely by f.

Finally, f is an isomorphism, if and only if it is an epimorphism and
a monomorphism. Obviously, f is an epimorphism, if and only if f is
an epimorphism, and by Theorem 2.6, f is a monomorphism, if and

only if kerf/0 = kerf = {0/6}, i.e., if and only if kerf = 0/6. O

Corollary 3.17. (Fundamental Homomorphism Theorem) Let 0 be a
reqular congruence in H. Then every homomorphism f : H — K
of H,MV-algebras induces an isomorphism H/0 ~ Imf, where 0/0 =
kerf.

Proof. Since f : H — Imf is an epimorphism, and kerf = 0/6, so,
by Theorem 3.16, the mapping f : H/0 — Imf with a/0 — f(a) is
an isomorphism. O

Corollary 3.18. Let 0 and ¥ be the reqular congruences in H,MV-
algebras H and K, respectively, and let f : H — K be a homo-
morphism with f(0/0) C 0/9. Then f induces a homomorphism f :
H/0 — K/Y with f(a/0) = f(a)/9. f is an isomorphism, if and
only if Imf/9 =K, and f~1(0/9) C 0/6.

Proof. Obviously, the composition H EN QN e /¥ is a homomor-
phism, and 0/6 C f~1(0/9) = kerfif because:

x € kertf & tf(x)=0/9< f(x)/¥9=0/0< f(z) €0/
& xe f7H0/9).

Now, by Theorem 3.16, for ff instead of f, and K /v instead of K, the
mapping H/0 — K/9 with a/0 — (4f)(a) = f(a)/¥ is a homomor-
phism, which is an isomorphism, if and only if §f is an epimorphism
and kerff = 0/0. But kerfif = 0/6, if and only if f~1(0/9) C 0/6.
Now, assume that ff is an epimorphism, and = € K. Then x/9 € K /9,
and so z/9 = ff(h) = f(h)/9, where h € H. This implies that
z € f(h)/9, whence K C Imf/9. Obviously, Imf/9 C K. Hence,
K = Imf/9. Conversely, assume that K = I'mf/d, and z/9 € K/V.
Then z € K, and so z/9 = f(a)/¥ = tf(a), for some a € H, proving
nf is onto. Particulary, if f is onto, Imf = K, and so Imf/9 = K.

0

Let 6 and ¥ be regular congruences in H such that ¢ C 6. Define a
binary relation 6/9 in H/9 by

a/9(0/9)b/9 < abb.



58 BAKHSHI

It is obvious that 6/1 is a regular congruence in H /4.

Corollary 3.19. Let 6 and ¥ be reqular congruences in H and 9 C 6.
Then (H/9)/(0/9) ~ H/6.
Proof. Obviously, the mapping f : H/9 — H/0 with f(a/¥) = a/0 is
an epimorphism, and
kerf = {a/0:a/0 = f(a/V¥)=0/0} ={a/V:ab0}

= {a/V:a/9(0/9)0/0}

= 0/(0/9)
whence, by Corollary 3.17, (H/9)/(0/9) ~ Imf = H/6. O

4. FUNDAMENTAL MV-ALGEBRAS

In this section, we introduce the concept of fundamental relation on
H,MV-algebras. We first give an application of strong congruences.

Theorem 4.1. If 0 is a reqular strong congruence in H, (H/0,&,*,0/0)
18 an MV-algebra.

Proof. In virtue of Theorem 3.12, it is enough to prove that, for all
z,y € H, the set x/0 @ y/0 is singleton. Let a/0,b/0 € x/0 ® y/0.
Then there exist ¢,d € x @ y, such that a/0 = ¢/0 and b/0 = d/6.
Since 6 is reflexive, so xfx and yfy, whence z @ yf,x @ y. This implies
that cd, i.e., a/0 = c/0 = d/0 =b/0, proving |x/0 ® y/0| = 1. O

Let U,s and U, be the set of all finite sums of finite products and the
set of all finite products of finite sums of the elements of H, respectively,
and let U = Uy,; UU,. Define a binary relation v in H by

avb, if and only if {a,b} C u, for some u € U.

It is obvious that v is reflexive and symmetric.

Define a binary relation v* in H by av*b, if and only if there exist
n € N, and 2y, 29,..., 2,41 € H, such that a = 2z, b = 2,41, and for all
ie{l,2,...,n}, {2,211} C uy, for some u; € Y.

Theorem 4.2. The relation v* is an equivalence relation in H.

Proof. Let a € H. From a € a ® 1, forn = 2, 21 = 2z = a, and

u=001)d®(a®1), we get
{a}Ca®1C00@e)C0e)®(@ol)=uy,

whence avy*a, i.e., 7" is reflexive. Now, let a,b € H be such that

ay*b. Then there exist n € N, 21, 25,..., 2,41 € H, such that a = 2,
b = zp41, and for all 4 € {1,2,...,n}, {z, 21} C u;, where u; € U.
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Let y; = zn—iqo, for all @ € {1,2,...,n}. Then y; = b, y,11 = a,
and {y;,¥i+1} C v;, where v; = u,_;41 € U, proving by*a, i.e. 7* is
symmetric. For transitivity, let ay*b and by*c, for a,b,¢c € H. Then
there exist n,m € N, 21,..., 241, W1, ..., W1 € H, such that a = 2z,
Zn4+l = b = Wi, C = Wp41, and {Ziazi—i-l} Q U; and {U}j,w]'+1} Q vj,
where w;,v; € U, for all i € {1,2,...,n} and j € {1,2...,m}. Let

r; = z, for i € {1,2,...,n}, and z; = wj, where i = n + j, for
j€{1,2,...,m}. Then a = x1, ¢ = xy1 and {x;, 2,11} C 1y, where
r; € U. Thus v* is an equivalence relation in H. O

Theorem 4.3. ~* is the smallest reqular strong congruence in H with
the property that H/~v* is an MV-algebra.

Proof. In virtue of Theorem 3.4 and Remark 3.5, to prove that v* is a
strong congruence, it is enough to prove that (3.1) holds, and for all
x? y? a e H?

xvy*y implies that x @ ay;y @ a, and a ® xv.a B y.

Assume that zv*y, for x,y € H. Then there exist n € N, ay,...,a,11 €
H, such that © = a1, y = a,.1, and for all ¢ € {1,2,...,n}, {a;,a;11} C
uj, for some u; € U. This implies that z* = af, y* = a;,,,, and
{a7, a1} € uf €U, whence z*y*y*. Thus (3.1) holds. Also, if a € H,
for s; € a; P a, we have:

{85,811} C(a; B a)U (a1 B a) Cu;@aCu;®(a®l)=v, €U

or {s;,$is1} Cu;@aCu;©(a®0) €eU. Thusfor sy cxda=a,da
and s,y1 € yP a = a1 P a, we have s17*s,41. This implies that
r@®ayiy®a. Similarly, we can show that zv*y implies that a®zyiaBy.
Thus ~* is a strong congruence in H.

For regularity, assume that * @y~ {0}, and y*@x~: {0}, for z,y €
H. Then (z*®y)*y: {0}, and (y*®x)*~: {0}, and so (z*®y)* By 0y,
and (y* @ x)* ® 2750 @ z, whence 0 ® 2750 @ y. Since y € 0 B y and
x € 0@ x, so xy*y proving ~v* is regular. Therefore, v* is a regular
strong congruence in H, and H/v* is an MV-algebra.

Now, let d be a regular strong congruence in H with the property
that H/§ is an MV-algebra, and xvyy, for x,y € H. Then {z,y} C
u € U. Assume that u = @}, (O 2;;), where z;; € H. Since ¢ is
a strong congruence, so u/0 = &7 (OFL,x;;/9) is singleton, and since
x/d,y/d € u/d implies that x/0 = y/9, i.e., xdy. Hence, v C §. Now,
if xv*y, there exist n € N and aq,a9,...,a,41 € H, such that z = ay,
Yy = an+1 and a;ya;1q, whence a;0a;,1. Since J is transitive, so xdy,
proving v* C . Therefore, v* is the smallest regular strong congruence
in H, such that H/~* is an MV-algebra. O
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Remark 4.4. The relation v* is called the fundamental relation in H,
and H/~v* is called the fundamental MV -algebra.

5. DIRECT PRODUCTS

In this section, we define the direct product of a family of H,MV-
algebras, characterize the H,MV-subalgebras and (weak) H,MV-ideals
of it, and give some homomorphism theorems.

Let {(H;; ®;,,0;) : ¢ € I} be a non-empty family of H,MV-algebras.
The cartesian product Hie ; H; of H;’s is defined as the set of all func-
tions f : [ — UH; with f(i) € H;, for all i € I. For f,g € [[..; H,
define f = g, if and only if f(i) = g(i), for all i € I, and

() = f(@)" and (f @ g)(i) = f(i) @i g(3),Vi € 1.

Also define 0(i) = 0;, for all 7 € I. It is easy to check that [, H;
together with ‘@®’, *’ satisfies (H,MV1)-(H,MV8). Thus we get

i€l

Theorem 5.1. If {(H;;®;,%,0;) : i € 1} is a non-empty family of
H,MV-algebras;
(1) (TLe; Hiz®,7,0) is an H,MV-algebra,
(2) for each k € 1, the mapping my, : [ [,c; Hi — Hy with f — f(k)
s an epimorphism.

Hiel H; is called the direct product of H;’s. If H; is an H,MV-algebra
with the order =<;, the order on [],., H; is given by f = g, if and only
i £(3) = g(i).

The image of f can be written as {a;}, where a; € H;. In this
case, the hyperoperation ‘@’ is written as {a;} @ {b;} = {a; ®; b;}. If
I'={1,2,...,n} is finite, [ [,.,; H; is written as Hy x Hy x --- x H,.

In the sequel, in this section, {H; : i € I} is a non-empty family of
H,MV-algebras, and Hiel H; is the direct product of H;’s.

Theorem 5.2. Let H; be an H,MV-algebra, and S; be a non-empty
subset of H; with i € 1.
(1) If S; is an H,MV-subalgebra, [],.; Si is an H,MV-subalgebra of
Hiel H;.
(2) If S; is an H,MV-ideal, [],.; S; is an H,MV-ideal of [ [,; H;.
(3) If S; is a weak H,MV-ideal, 1], , S; is a weak H,MV-ideal of
Hie] H;.

Proof. Routine. 0

Theorem 5.3. Let H; (i € I) be an H,MV-algebra and S be a non-
empty subset of [[,c; H;.
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(1) If S is an H,MV-subalgebra, there exists unique H,MV-subalgebra
Si of H;, for alli € I, such that S = [],.; S;.

(2) If S is an H,MV-ideal, there ezists unique H,MV-ideal S; of H;,
for alli € I, such that S =[],c; Si.

(3) If S is a weak H,MV-ideal, there ezists unique weak H,MV-ideal
I; of H;, for alli € I, such that S = [],.; S;.

Proof. We first observe that if S is a non-empty subset of ||
S; ={a; € H; : 3f € S, such that f(i) = a;},

we get [[,c; Si=S.

(1) Assume that S is an H,MV-subalgebra of [[,_, H;. We show that
S; is an H,MV-subalgebra of H;. Obviously, S; # () because 0; € S;, for
all i € I. Let a;,b; € S;, for ¢ € I. Then there exist f,g € S, such that
f(7) = a; and g(i) = b;, whence a;" @;b; = f*i(i) @, g9(i) = (f*Bg)(i) C
S;, proving S; is an H,MV-subalgebra of H;.

Now, let T; be an H,MV-subalgebra of H;, for all ¢ € I, such that
S = [Lic; Ti- We show that T; = S;, for all i € I. Let a; € H;. Then
a; € T;, if and only if there exists f € [[,c; T = S = [[,c; S such
that f(i) = a;, if and only if a; € S; means that T; = S;.

(2) By (1), S; is closed with respect to &;, for all i € I. Now, let
a; =; b and b; € S;. Let f,g € [[,c; Hi be such that f(i) = a;, and
g(1) = b;. Then:

0/ €a; ®ibiNb; ®ia;r = [7(i) i g(i) Ng(2) @ [7(0)
= (ffe9@)n(ge f)@)
whence 0 € f*®gNg® f* ie f=2ge€][l,,5 =S5 Since S is an
H,MV-ideal, so f € S, and hence, a; = f(i) € S;. The uniqueness is

proved similar to the proof of (1).
(3) The proof is similar to the proof of (2). O

Hi, for

el

Definition 5.4. Let {H; : i € I} be a non-empty family of H,MV-
algebras. The weak direct product of H,’s, denoted by [, H;, is de-
fined as the set of all f € [[,.; H;, such that for all but a finite number
of i € I, we have f(i) = 0;.

Remark 5.5. Note that when [ is finite, the weak direct product and
direct product are equal.

Theorem 5.6. Let {H; : ¢ € I} be a non-empty family of H,MV-
algebras.

(1) If 0, ® 0; = {0;}, for all i € I, I];.; H; is an H,MV-ideal of
H;.

i€l
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(2) the mapping v, = Hy, — [[;c; Hi given by u(a) = {a;}ier, in
which ar = a and a; = 0;, for all © # k, is a weak monomor-
phism.

(3) If 0; ® 0; = {0;}, for all i € I, 1;(H;) is an H,MV-ideal of
[L;c; H-

Proof. (1) Let f,g € [],c; Hi be such that f < g, and g € [[:c; H.
Then f(i) =; g(i) and g(i) = 0;, for all but a finite number of i €
I whence 07" € f* (i) @; g(i) N g(i) &; f*(i). Now, for i € I with
g(i) = 0;, we have 07" € f*(i) @®; 0, N 0; ®; f* (i), which implies that
f(i) =i 0y, ie., f(i) = 0;, proving f € [[;., H;. Let f,g € [[ie; Hi.
Then f(i) = 0, and g(j) = 0;, for all but a finite number of ¢,j € I.
Let k € I be the smallest element, for which f(k) = g(k) = 0x. Then
(fDg)(k) = f(k)Drg(k) =0, ®0x = {0}, for all but a finite number
of k € I. Thus f @ g C [[;c; H;. Therefore, [[;c, H; is an H,MV-ideal
of Hie[ H;.

(2) Let a € Hy. Then tx(a**) = {a;}ics in which ax, = a** and a; = 0;,
for all ¢ # k. On the other hand, ¢x(a)* = {a;}c; = {a]" }ier, in which
a;F = a* and a;" = 1, for all ¢ # k. This implies that tx(a*) < tp(a)*.
Now, let a,b € H;. Then:
te(a ®pb) = {w(c):c€ad,b}

= {{ai}ig tap =c€aPg b7 a; = OZ,VZ 7é k’}
Q {CLZ‘ @bz} with ap = Cl,bk = b,CLi = bl = OZ,VZ # k
{ai}ier ® {bi}ier with ay = a,by = b, a; = b; = 0;,Vi # k
= u(a) @ w(b)
proving that ¢, is a weak homomorphism. Obviously, ¢, is one-to-one.

(3) Let {CLZ} j {bl}, and {bz} € Lk(Hk) Then 0* € {CLl}* @D {bl} N
{b;} ® {a;}*, and by = a € Hj and b; = 0;, for all i # k, whence
07 € a;' ®; b, by = a, and b; = 0;, for all # # k. This implies that
0% € a;" @; 0;, for all i # k, and hence, a; < 0;, i.e., a; = 0;, for
all © # k. Thus {a;} € w(Hg). Now, let {a;},{b;} € t;(H;). Then
a; = b; = 0;, for all j # i, and so, {a;} & {b;} = {a; ®; b;} in which
a; ®; bj = 0; ®; 0; = {0;}, proving {a;} & {b;} € v:(H,). O
Theorem 5.7. Let {f; : H, — K; : i € I} be a non-empty fam-
ily of homomorphisms of H,MV-algebras, and the mapping f =[] fi
[Lic; Hi — Ile; Ki be given by {a;} — {fi(a;)}. Then fis a ho-
momorphism such that f([[ic; H;) C [ ;e K, kerf = [Le; ker fi and
Imf =T1l,c; Imfi. Thus fis a monomorphism (resp. an epimorphism)
if and only if so is each f;.

Proof. Routine. O
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Theorem 5.8. Let {H; : i« € I} be a non-empty family of H,MV-
algebras, and 3" be the fundamental equivalence relation in H;, for all
i € I, and 5* be the fundamental equivalence relation in [[,.; H;. Then

) ier 11
(Ilicr H)/B* =~ 11ies Hi/ Bi
Proof. Consider the relation 3 in [Lc; Hi, as follows:

{a;}B{b:} < a;3: b, Vi € 1.

Obviously, 3 is a congruence relation in [[,., H;. To prove regularity,
let {a;}, {b;} € [[,c; H; be such that {a;}* @ {b:;}5{{0,}} and {b;}* ®
{a;}8{{0;}}. Then {a}* ®; b;}5{{0;}} and {b}" ®; a;}3{{0;}}, whence
{c:}3{0,} and {d;}5{0;}, for all ¢; € a’* @®; b; and d; € b’ @; a;. Hence,
¢;f0; and d;870;, ie., ai' @; b;57°{0;} and b ®; a;5:°{0;}, whence
a;37b;, proving {a;}5{b;}.

Now, define *" and ‘@’ on (], H,)/B by

({ai}/B)" = {a;}/B, {ai}/Be{b:} /B = {{c:} /B : i € aif B @ibi/ 57}

It is easy to check that 3 is the smallest regular congruence relation in
[Lc; Hi, such that ([[,.; H;)/B is an H,MV-algebra, so 8 = *.

Now, by Theorem 3.15, the mapping b; : H; — H;/f5;" is an epimor-
phism with ker; = 0;/5;" and so, by Theorem 5.7, [Tt : [[,c; Hi —
[Lic; Hi/B;" is an epimorphism with

k:er(H 0;) = Hk‘erhi = HOZ/B:’ =0/p".

i€l i€l

Thus, by Corollary 3.17, ([[,c; Hi)/B* ~ [Lic; Hi/ 5" O

6. CONCLUSIONS AND THE FUTURE WORKS

Based on the first work on H,MV-algebras, in this paper, we intro-
duced some types of congruences, studied the quotient H,MV-algebra,
and obtained some homomorphism theorems. Moreover, we obtained
the fundamental equivalence relation on an H,MV-algebra, the small-
est equivalence relation on an H,MV-algebra to make it to an MV-
algebra. Finally, we introduced the direct product of a non-empty
family of H,MV-algebras. We proved that the direct product of a fam-
ily of H,MV-subalgebras (H,MV-ideals, weak H,MV-ideals) is again an
H,MV-subalgebra (H,MV-ideal, weak H,MV-ideal). Also we character-
ized the H,MV-subalgebras (H,MV-ideals, weak H,MV-ideals) of the
direct product of a family of H,MV-algebras via the H,MV-subalgebras
(H,MV-ideals, weak H,MV-ideals) of any member of the family. Then
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using the fundamental equivalence relation, we obtained some homo-
morphism theorems.

The category of H,MV-algebras and fuzzy H,MV-ideals could be the
topics for further research works.
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