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FUZZY NEXUS OVER AN ORDINAL
A. A ESTAJI, T. HAGHDADI* AND J. FAROKHI

ABSTRACT. In this paper, the fuzzy subnexuses over a nexus N
are defined and the notions of prime fuzzy subnexuses and fractions
induced by them are studied. Finally, it is shown that if S is a meet
closed subset of the set F'sub(N), of fuzzy subnexuses of a nexus
N, and h = AS € S, then the fractions S™'N and {h}~!N are
isomorphic as meet-semilattices.

1. INTRODUCTION

Fuzzy sets were introduced by Lotfi A. Zadeh [15] and Dieter Klaua
[10] in 1965 as an extension of the classical notion of sets. At the
same time, Salii [11] defined a more general kind of structures called
L-relations, which were studied by him in an abstract algebraic context.
Fuzzy relations, which are used now in different areas such as algebra
[6, 12], rough set [, 7], and clustering [3], are special cases of L-relations
when L is the unit interval [0, 1].

Section 2 of this paper is a prerequisite for the rest of the paper. The
definitions and results of this section are taken from [2, 5, &, 9, 11]. In
Section 3, a fuzzy subnexus over an ordinal is defined, and also a prime
fuzzy subnexus over an ordinal is defined. Particularly, we show that
for every nexus N, and f € F'sub(N):

(1) If [Imf| < 2, and @ # f. € Psub(N), then g A h C f implies
that ¢ C for h C f.

(2) If g A h C f implies that ¢ C f or h C f, for every g,h €
Fsub(N), then [Imf| < 2.
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(3) If [Imf| = 2, and for every g,h € Fsub(N), g Ah C f implies
that g C f or h C f, then ) # f, € Psub(N).

In Section 4, we introduce the notion fraction induced by fuzzy sub-
nexuses, and give some characterizations for fraction of N in partic-
ular, we show that if S; and Sy are meet closed subsets of F'sub(N)
and h = AS; = ASs € S; NSy, then S;'N = S;'N = {h}IN as
meet-semilattices.

2. PRELIMINARIES

A partially ordered set A is a meet-semilattice, if the infimum for each
pair of elements exists. A homomorphism is a function f : N — M
between the meet-semilattices N and M, such that f(z Ay) = f(x) A
f(y) for all x and y in N. Each homomorphism is order preserving,
i.e. x <y implies that f(z) < f(y).

A subset D of poset A is directed, provided that it is non-empty,
and every finite subset of D has an upper bound in D.

Let A be a poset. For X C A and = € A, we write:

(1) | X ={a€ A:a <z for some z € X}.

(2) 1 X ={a€ A:a>z for some z € X}.

(3) 4= = {z}.

(&) Tz =1 {x}.

We also say:

(5) X is a lower set, if and only if X =] X.

(6) X is an upper set, if and only if X =1 X.

(7) X is an ideal, if and only if it is a directed lower set.

(8) An ideal is principal, if and only if it has a maximum element.

For undefined terms and notations, see [5, 11].

The collection of all ordinal numbers is a proper class, and we denote
it as 9. It is also customary to denote the order relation between
ordinals by a < f instead of the two equivalent forms o C 3, a € £,
though the latter is also quite common. If « is an ordinal, then, by
definition, we have o = {5 € O|8 < a}. If a, f € O, then either o < 8
or f<aora=0.If Ais a set of ordinals, then |J A is an ordinal.

Let v,0 € O, v > 1, and 6 > 1. An address over 7 is a function
a : 0 — 7 such that a(i) = 0 implies that a(j) = 0, for all j > i. We
denote by A(7), the set of all addresses over 7.

Let a : 6 — ~y be an address over . If, for every i € ¢, a(i) = 0, then
it is called the empty address, and denoted by (). If a is a non-empty
address, then there exists a unique element 5 € § + 1, such that, for
every i € (3, a(i) # 0, and for every § < i € §, a(i) = 0. We denote this
address by (a;)iep, where a; = a(i) for every i € S.
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Let a:6 — v, and b: 8 — n be addresses and § < 5. We say a = b,
if for every i € 0, a; = b;, and for every i € 5\ 6§, b; = 0. In other
words, there exists a unique element 5 € O, such that a = (a;)icp = b.

The level of a € A() is said to be:

(1) 0, ifa=().
(2) B,1f () # a = (a)iep-
The level of a is denoted by [(a).

Let a and b be two elements of A(vy). Then we say that a < b,
if [(a) = 0 or one of the following cases satisfies for a = (a;);es and
b= (bi)ies:

(1) If 6 = ]., then Qo S b().

(2) If B > 2 is a non-limit ordinal, then alg_1 = b|g_1 and ag_; <
bs_1.

(3) If B is a limit ordinal, then a = b|s.

Proposition 2.1. [9] (A(v), <) is a meet-semilattice.

Let () # a = (ai)icp be an element of A(y). For every § € § and
0 < j < as, we put a®) : § +1 — v, such that for every i € § + 1,
o f o Hics
! j if i =4.
Definition 2.2. [9] A nexus N over 7 is a set of addresses with the
following properties:
(1) 04 N C AH).
(2) If () # a = (a;)iep € N, then for every § € f and 0 < j < as,
a%) € N.

Proposition 2.3. [9] Let N be the set of addresses over ~y. Then,
N is a nexus over v, if and only if 0 # N C A(y), and for every
(a,b) € N x A(7), b < a implies that b € N.

Proposition 2.4. [9] Let N be a nexus over 7. Then (N,<) is a
meet-semilattice.

Let N be a nexus over 7, and ) # M C N. Then M is called a
subnexus of N, if M itself is a nexus over . The set of all subnexuses
of N is denoted by Sub(N). It is clear that {()} and N are the trivial

subnexuses of nexus N.

Proposition 2.5. [9] If N is a nexus over v, and {M;}ie;r C Sub(N),
then J,c; M; € Sub(N) and (\;c; M; € Sub(N).

Let N be a nexus over v, and X C N. The smallest subnexus of N
containing X is called the subnezus of N generated by X, and denoted

i€l
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by < X >. If | X| =1, then < X > is called a cyclic subnexus of V.
It is clear that < ) >= {()}, and < N >= N.

Remark 2.6. [9] Let ) # N C A(v). Then, N is a nexus over v, if and
only if:
N=|N=Jla
aeN
A proper subnexus P of a nexus N over v is said to be a prime
subnexus of N if a Ab € P implies that a € P or b € P, for every
a,b € N. The set of all prime subnexuses of N is denoted by Psub(N).

Proposition 2.7. [9] Let P be a proper subnexus of a nexus N over
~. Then, P is a prime subnexus of N, if and only if N \ P is closed
under finite meet.

Corollary 2.8. [9] Let N be a nexus over v, and ) # X C N. If X is
closed under finite meet, then there exists a € X, such that 1 a =T X,
and a = N\ X.

A fuzzy subset f on set X is a function f: X — [0,1]. We denote
by F(X) the set of all fuzzy subsets of X. For f,g € F(X), we say
f C g, if and only if f(x) < g(z) for every x € X. Let f € F(X),
and t € [0,1]. Then the set f; = {z € X : f(z) > t} is called the level
subset of X with respect to f. Also we put f. ={z € X : f(x) = 1}.
Forz € X and ¢ € (0,1], 2" € F(X) is called a fuzzy point, if and only if
z'(y) = 0 for y # x and a'(z) = t. The fuzzy point z' is said to belong
to f € F(X), written o' € f, if and only if f(x) > ¢. If f,g € F(X),
then f C g, if and only if 2! € f implies ! € g for every fuzzy point
1t € F(X). For evrey f,g € F(X),and r,s € [0,1], (fNg), = frNgr,
(fUg), = frUg,, and if r < s, then f,. D f,. For every {fi}ier C F(X)

and r € [Ov 1]’ Uie](fi)T C (Uie] fl)r and miel(fi)r = (miel fz)?‘ For
evrey f,g € F(X), f Cg< f. Cg,, forall r € [0,1] (see [8]).

3. PRIME FUZZY NEXUS

In this section, the notions of a fuzzy nexus and a prime fuzzy sub-
nexus of a nexus are defined, and we discuss the relation subnexus and
fuzzy subnexus, prime subnexus, and prime fuzzy subnexus.

Definition 3.1. Let f be a fuzzy subset on a nexus N. Then f is
called a fuzzy subnezxus of N, if a < b implies that f(b) < f(a) for all
a,b € N. The set of all fuzzy subnexuses of N is denoted by Fsub(N).

Proposition 3.2. Let A be a non-empty subset of a nexus N. Then,
A € Sub(N), if and only if xa € Fsub(N), where that xa is the
characteristic function of A.
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Proof. Let A € Sub(N), and a < b, for some a,b € N. If b € A, by
Proposition 2.3, a € A, and so, xa(a) = xa(b) = 1. But if b ¢ A, then
xa(b) = 0, and 0, ya(b) < ya(a). hence, x4 € Fsub(N).

Conversely, let (a,b) € A x N, and b < a. Then 1 = ya(a) < xa(b),
which follows that x4(b) =1, i.e. b € A. Hence, A € Sub(N). O

Proposition 3.3. Let f be a fuzzy subset of N. Then f € Fsub(N),
if and only if f. € Sub(N), for every r € [0,1], where f,. # (.

Proof. Suppose [ € Fsub(N) and f. # 0, for r € [0,1], and let b €
N,a € f,, such that b < a. Then f(b) > f(a) > t, and hence, b € f,.
Conversly, suppose that f is a fuzzy subset of N, such that f, €
sub(N) for every r € [0,1]. Now let a,b € N, a < b. We show that
f(b) < f(a). Let f(b) =r, for r € [0,1]. Thus b € f,. # (), and since
fr € Sub(N), we can conclude from Proposition 2.3 that a € f,. Hence,
fla) =1 = f(b). O

Proposition 3.4. Let N be a nexus over 7, and {fi}ier € Fsub(N).
Then:

(1) Uje; fi € Fsub(N).
(2) Nyes fi € Fsub(N).

Proof. Let a,b € N, and a < b Then
(U fi)(b) = \/fi(b) < \/fz‘(@) = (U fi)(a)
iel iel iel iel

and

() £)®) = N\ £i®) < A fila) = () fi)(a).

iel el iel iel

Let N be a nexus over v. For f € F(N), we put
<f>= (] g
fCgEFsub(N)

It is clear that < f > is a fuzzy subnexus of N.

Proposition 3.5. Let N be a nexus over v, and [ be a fuzzy subset of
N Then:

<f>@=\,_, I

Proof. Let f be a fuzzy subset of N. Define h : N — [0, 1], with
h(a) = Vyero f(b). We are going to show that h is the smallest fuzzy
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subnexus of N, which f C h. Let a,b € N, and a < b. Since 1 b C 1 a,
we can conclude that

ha) =\ _ 1) 2\ fz) = hid).

Hence, h € Fsub(N). Now, let g € Fsub(N), f C g. Then for every
b €1 a, we have g(a) > f(b), which follows that g(a) > V., f(b).
Hence, g(a) > h(a), i.e. h C g. O

Proposition 3.6. If N is a nezus over vy, and f,g € F(N), then
<f>N<g>><fng>.
Proof. For every a € N,
(<f>n<g>)a) = min{< f>(a),<g>(a)}

= min{\/bETa £(b), \/b€ Q)
> \/bemmm{f(b),g(b)}
= V,..(na®)

= < fnNng>(a).
Hence, < f>N<g>>< fNg>. O
Example 3.7. Let v =3, N = {(),(1),(2)}, and f,g: N — [0,1] be

functions such that
(0 W
L 01 02 03

(0m @
77\ 03 02 01 )

It is clear that < f >N < g>#< fNg>.

and

Definition 3.8. Let N be a non-trivial nexus over v, i.e. N # {()}. A
fuzzy subnexus f of N is called a prime fuzzy subnexus, if

flanb) < maz{f(a), f(b)},

for all a,b € N. The set of all prime fuzzy subnexuses of N is denoted
by PFsub(N).

It is clear that if f € PFsub(N), then f(a Ab) = f(a) or f(b), for
all a,b € N.
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Proposition 3.9. Let N be a non-trivial nexsus over v, and [ be a
fuzzy subnexus of N. The following assertions are equivalent:
(1) f is a prime fuzzy subnezus.
(2) For everyr € [0,1], if f. is a non-empty subset N, then f,. is a
prime subnexus of N.
(3) For everyr € [0,1], N\ f, is closed under finite meet.

Proof. (1) = (2). Let r € [0,1], and f, be a non-empty subset of V.
If a,b € N and aAb € f,., then r < f(a Ab) < max{f(a), f(b)}, and
which follows that a € f, or b € f,.. By Proposition 3.3, f,. is a prime
subnexus of N.

(2) = (3). Suppose that r € [0,1]. If f, is a non-empty subset of N,
then, by Proposition 2.7, N\ f, is closed under finite meet. If f,. =0,
then, by Proposition 2.4, we are done.

(3) = (1). Let a,b € N, and f(a Ab) =1r € [0,1]. Since a Ab &
N\ f., we can conclude from the statement (3) that a ¢ N\ f,. or
b N\ f,. Hence a € f, or b € f,., and which follows that f(a A b) <
max{f(a), f(b)}. The proof is now complete. O]

Proposition 3.10. Let N be nexus over v and f be an arbitrary fuzzy
subnexus.
(1) If N is a chain, then f is a prime fuzzy subnezus.
(2) If f is a prime fuzzy subnezus and one to one, then N is a
chain.

Proof. (1) Suppose that a,b € N, and a < b. Since f(a) > f(b) so
fla Ab) = f(a) = maz{ f(a), /(b))

(2) Let a,b € N and aAb = c. If a # c and b # ¢, then since
¢ <a,c<band fis one to one, we can conclude that f(c) > f(a),
and f(c) > f(b). Therefore, f(c) > max{f(a), f(b)} > f(a Ab), which
is a contradiction. O

Proposition 3.11. Let ' : M — N be a homomorphism between
nexus. Then the following assertions hold:
(1) If g is a fuzzy subnezus of M, then f = gF is a fuzzy subnexus
of N.
(2) If g is a prime fuzzy subnezus of M, then f = gF is a prime
fuzzy subnexus of N.

Proof. (1) It is clear that f is a fuzzy subset of N. Suppose that
a,b € N, and a < b. Since F' is a homomorphism, we can conclude
that F'(a) < F(b), which follows that g(F(a)) > g(F(b)). Hence, f is

a fuzzy subnexus of N.
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(2) For every a,b € N,

flanb) = gF(aNb)

9(F(a D))

9(F(a) NF(D))

< max{g(F(a),g(F (b))}

Hence, f is a prime fuzzy subnexus of N. 0

Remark 3.12. Let x € N and ¢ € (0,1]. Then < 2 >: N — [0, 1],
defined by

t rxetTa
<a'> (a) =

0 x¢&Ta

is a fuzzy subnexus.

Remark 3.13. Tt is clear that if N is a nexus, and |N| < 4, then the
nexus N is lineary ordered.

Proposition 3.14. Let N be a nexus over . The following assertions
are equivalent:

(1) Nexus N is lineary ordered.
(2) Every fuzzy subnexus of N is prime.

Proof. (1) = (2). Let f € Fsub(N), and a,b € N. Hence, a < b
or b < a, say a < b, since nexus N is lineary ordered. Therefore,
flanb) = f(a) > f(b), which follows that f(a Ab) = max{f(a), f(b)}.

(2) = (1). Suppose that every fuzzy subnexus of N is prime, and
a,b € N. Put aANb=c,and let a # ¢, b# cand t = % € [0,1). Tt is
clearly t =< ¢ > (¢) < max{< " > (a),< ¢! > (b)} = 0, according to
statement (2). This is a contradiction. Therefore, nexus N is lineary
ordered. OJ

Proposition 3.15. Let N be a nexus overy, a,b € N, andr,t € (0,1].
Then the following assertions hold:

(1) <a” > AN <b >=<(aNb)" >.

(2) < (aAbd)!>AN<a >=<(aAb)' >.

(3) <(aVbd)!>AN<a >=<a >.

Proof. For every x € N, a,b €1 x, if and only if a A b €1 x. Hence,
<a" > A<b >=< (aAb)" >. The rest is similar. O
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Proposition 3.16. Let N be a nexus over~y, a,b € N, and r,t € (0,1].
We define g : N — [0, 1] by

r a €T x&b &1 x
s a ¢t x&b et x
9(x) = rVs abetx

0 a &1 x&b &1 x

Then the following assertions hold:

(1) g € Fsub(N) and g =< a" >V < b >.
(2) <a" >V <b ><<(aVb)>.

(3) < (aAb)!>V<a >=<a >.

(4) <(aVbd)!>V<a >=<(aVb)>.
(5) <a" >V <a >=<a™V>.

Proof. Evident. O

Proposition 3.17. Let N be a nexus overy, a,b € N, andr,t € (0,1].
The following assertions hold:
(1) a < b, if and only if < a® ><< ' >.
(2) r <t, if and only if < a” ><< a' >.
(3) <a">A<a >=<a” >.
Proof. (1) Let a < b. Since a €1 z, implies that b €1 z, we can
conclude that < a' > (z) = t implies that < b* > (x) = ¢. Hence,
<al ><< b >,
Conversely, let < a' ><< b' >. Hence, t =< a' > (a) << b' >
(a) <t,ie <b > (a)=t. Therefore, b €t a.
The rest is similar. [l

Example 3.18. Let v =3, N = {(),(1),(2)}, and h, f,g : N — [0,1]
be functions such that

f— 0 @ (2
-\ 03 02 0125 )’
0 @O (2
0.4 035 0.1
h:< 0 (@ (2)>.
0.3 02 0.1

It is clear that h € Fsub(N) is prime, and f,g € Fsub(N). Also,
fAgChbut fZ hand g ¢ h.

g

and
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Proposition 3.19. Let N be a nexus, and f € Fsub(N).
(1) If [Imf] <2 and O # f. € Psub(N), then g A h C [ implies
that g C f or h C f, for every g,h € Fsub(N).
(2) If g AN h C f implies that g C f or h C f, for every g,h €
Fsub(N), then |[Imf| < 2.
(3) If [Imf| =2 and for every g,h € Fsub(N), g A h C f implies
that g C f or h C f, then O # f. € Psub(N).

Proof. (1) If [Imf| =1, then I'mf = {1}, which finishes the proof.

Now, we assume that [Imf| = 2, then Imf = {t,1} with ¢t < 1.
Suppose that there exist two fuzzy subnexuses h and g over N, such
that gAh C fbut g Z f and h € f. Hence, there exist x,y € N, such
that h(xz) > f(x) and g(y) > f(y). Since f, is a prime subnexus, and
x,y & f«, we can conclude that Ay & f,, which follows that

(hAg) (@ Ay) =h(zAy) AglxAy) = h(z) Agly) >t = flzAy).
Thus h A g € f, which is a contradicition. Thus g C f or h C f.

(2) Let |[Imf| > 3. Then there exists a,b,c € N, such that f(a) <

f(b) < f(c). Now, we assume that r,s € (0,1), such that f(a) <r <
f(b) <s< f(e). If a Ab €T z, then, by Proposition 3.15,
(<a" > A<V >)(z) =< (aNb)" > () =r < f(b) < fland) < f(x).
Therefore, < a” > A < b° >C f, which follows that < a" >C f or
<b >C f. If <a" >C f, then < a” > (a) = r < f(a), which is a
contradiction. Also, if < b* >C f, then < b* > (b) = s < f(b), which
is a contradiction. Hence, [Imf| < 2.

(3) Suppose that f, = (). Then there exists a,b € N, such that
fla) =7 < f(b) = s < 1and Imf = {r,s}. Now, we assume that
t,k € (0,1), such that r <t < s < k < 1. If a Ab €1 z, then, by
Proposition 3.15,

(<a' > A< b >)(2) =< (anb)™ > (z) =t < f(b) < fland) < f(x).
Therefore, < a* > A < b* >C f, which follows that < a >C f or
< bF >C f. Hence, < a' > (a) =t < f(a) or < b* > (b) =k < f(b),
which is a contradiction. Thus f, # () and f, # N. Let a,b € N such
that a Ab € fi, a € f. and b € f.. Then there exists r € (0,1) such
that f(a) = f(b) <r < 1= f(aAb). If aAb €1 z, then, by Proposition
3.15,

(<a">A<b >)(z)=<(anb)">(x)=r<1= f(z).

Therefore, < a" > A < b® >C f, which follows that < a" >C f or
< b >C f. Hence, < a” > (a) =r < f(a) or <b" > (b) =r < f(b),
which is a contradiction. Therefore, f, € Psub(N). O
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4. FRACTION INDUCED BY NEXUS AND FUZZY SUBNEXUS

In this section, the fractions of a nexus N over an ordinal is defined,
and denoted by ST'N, where S is a meet closed subset of Fsub(N). It
is shown that this structure is a meet-semilattice and isomorphic with

{h}7IN, where h = A\ S. Also we show that every ideal of S™'N is of
the form of S™'I, where I is a subnexus of N.

Definition 4.1. A meet closed subset of Fsub(N) is a non-empty sub-
set S of F'sub(N), such that f A g € S, for every f,g € S.

Let S be a meet closed subset of F'sub(N). Define the relation ~g
on N x S as follows:

(a, f) ~s (b,g) & Fh e SVt € (0,1](< a'* > AgAh=<b' > Af AR).
We will proved that ~g is an equivalence relation. Let a,b,c € N,

f,9.h €S, (a,f) ~s (b,g), and (b,g) ~s (c,h). Then there exists
h1, hy € S such that

<a'>AgAh =<V >AfAIM

and
< b > AR Ahy =<c' > Ag A ho,

for every t € (0,1]. If k = hy A hg A g, then k € S, and for every
t € (0,1], we have

<a">ANhWAk = <a">AhWAh AhyAg
= <a" >AgAhi Ahy A D
= <b >AfAhiAhyAh
= <b >ARARAfAM
= < >ANgAhs A fAR
= < >AfARM ARy Ag
= <d>AfAE

Therefore, ~g on N x S is transtive. It is clear that ~g on N x S
is reflexive and symmetric. Hence, the relation ~g on N x S is an
equivalence relation. Write ¢ for the class of (a, f). The set of all

equivalence classes of ~g on N x S is denoted by SN, and it is
called the fraction of N with respect to S.

Definition 4.2. Let S be a meet closed subset of Fisub(N), and %, g €
S™IN. Then we say % < §7 if there exists h € S such that

<ad'>A<WB >AfAR=fAgA<a > Ah,
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for every ¢ € (0, 1].

Proposition 4.3. Let S be a meet closed subset of F'sub(N). Then
(STIN, <) is a meet-semilattice.

Proof. Tt is clear that < on S7!N is reflexive. Now, let
Thus there exists hy, hy € S, such that:

<a'>A<V >AfAR = fAgA<a > Al
and
<V >AN<a >ANgANhy=gA fA<b > Ahs.

By the commutativity of A, we have

(<a" >N AN(fAgGARIARy) = <a'>AN<b >AfAhAgAhy
= gAfA<D > Ao A fFAIM
= (<U>AFANfAGARLAhy).

Since S is a meet closed subset of N, we can conclude that f A g A
hi A\ hy € S, which follows that (a, f) ~g (b, g), and $= g. Thus < on
SN is antisymmetric.
Let % <band <
g g
hy, hy € S, such that

, for some € S7IN. Then there exists

a b c
frg’h

o

<ad'>A<U >AfAR =fAgA<a > Al

and

<b>AN<cd >AgAhy=gAhRA<b > Ahs.



SHORT TITLE OF THE PAPER SHOULD APPEAR HERE 7

Hence,

(FARN<a" >)AN(gAhiAhy) = (fAgA<a' > Ah) A

fA<a >A<b > Ah)A

(
(
(
(
(g AhA < b > Ahg) A
(<a' > NfAR)
= (gh <> A<V > Ahy) A
(<a' > NfAD)
(fA<b' > A <a' > Ahy) A
(gN < ¢ > Ahg)
(f Agn < a' > Ahy) A
(gN < ¢ > Ahg)
(A< >A<a >)A
(

Since S is a meet closed subset of F'sub(N), we can conclude that
g A hi A hy € S, which followes that % < £. Thus < on S~IN is

transitive, and (ST!N, <) is a partially ordered set.
Let %,g € STIN. Since for every t € [0, 1], by Lemma 3.15,

(FAGQA<a' >A<(aAb)! >=(fAg)ANfA<(aND) >
and
(FAGQA <V > A< (anb) >=(fAg) AgA < (aAb) >,

we can conclude that ?—/A\Z < % and ?—/A\Z < g. Now, let 7 € S—IN, such

that © < % and 7 < g. Then there exists v, w € S, such that

hA <a' >AN<c >A=hAfA<c > A,

and

hA<b >AN<c >Aw=hAgN<c >Aw.
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Hence,
(hAFAGA<dS)AN(vAw) = (hA A< > AV)A

(h A gn < > Aw)

(hA < a' > N <> Av)A

(hA <V >N <> Aw)

(hA <a' > A<V >A<d>)A
(
(

vA W)
= (A< (aAD)! > A< >)A
(v Aw).
Since S is a meet closed subset of N, we can conclude that v Aw € S,
which follows that § < ;—’A\Z. Therefore, % A g = ;_23' O

Proposition 4.4. Let S be a meet closed subset of Fsub(N). For every
a€ N and f,g €S, %zginS’lN.

Proof. Since (< a' > Ag) A (f ANg) = (< a* > Af)A(f Ag), and
fAgeS, wehave (a, f) ~s (a,g), and § =2 in STIN. O

9
Proposition 4.5. Let N be a nexus over vy, and let S be a meet closed
subset of F'sub(N).
(1) Ewvery ideal of ST*N s of the form of S™'I, where I is a sub-
nexus of N.
(2) If K is a finite ideal of ST'N, and h = NS € S, then there
exists a cyclic subnexus I of N such that K = S711.
(3) If M is a prime ideal of ST'N, then there exists [ € Psub(N)
such that M = S~1I.
(4) If M is a mazimal ideal of S™'N, then there exists I € Sub(N)

such that M = S™I, and I is a mazimal subnezus of N.

Proof. (1) Let K be an ideal of S™'N, and

I'={a € N| % € K for some f € S}.
Suppose that a,b € N, b e I, and a < b. Then there exists f € S, such
that % € K. By Proposition 3.17, < a* ><< b* > for every ¢ € (0, 1].
Then

<ad'>A<b >Af=<ad >Af

for every t € (0,1]. Hence, % < % € K. Since K is an ideal of S™' NV,
we can conclude that % € K, which follows that a € I. Now, by
Proposition 2.3, I is a subnexus of N, and it is clear that K = S~'1I.

(2) Let K be a finite ideal of ST!N. Tt is well known that every
finite directed subset of ST!N has the largest element. Since K is
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a directed lower set, we can conclude that there exists % € K, such

that K =] % We put I =] a, and we claim that K = S~'I. Let
§ € K. Then there exists k& € S, such that, for every ¢t € (0,1],
gh < at >N<b >ANk=gA fA < b > Ak, which follows that

(<(anb)! >N AN(GNFAE) = (<a >A<b > Ag)A
(N fAK)
= (KU >AN@GANFAE),
for every t € (0,1]. Therefore, g = “TM’ € S7'I. Now, let b € I and
g € S. Then, by Proposition 3.17,
gh<at >AN<b >Ah = <b >Ah
= gAfA<D > Ah,
for every ¢ € (0,1]. Hence, 2 < ¢ € K. Since K is an ideal of S™'N,

we can conclude that g € K. The proof is now complete.

(3) Let I = {a € N| € M for some f € S}. Then, by statement
(1), M = S7'I. Let a,b € N, such that a Ab € I. Then %% ¢ S~1]

f
for some f € S. Since “TN’ = %/\% and S is a prime ideal, we
can conclude that % € S7 or % € S7'I. Hence,a € [ orb eI, ie.

I € Psub(N).

(4) Let I = {a € N| 4 € M for some f € S}. Then, by statement

(1), M = S™'I. Suppose I is not a maximal subnexus of N. Then
there exist a subnexus J between I and N. Put M; = S~!J. Then M,
is an ideal of ST'N, and S~'I C S~1J, which is contradicition. O

Lemma 4.6. Let S be a meet closed subset of F'sub(N), and h = )\ S.
For every a,b € N and f,g € S

(1) If (a,h) ~g (b, h), then (a,h) ~gpy (b, h).
(2) If h € S and (a, h) ~qpny (b, h), then (a,h) ~g (b, h).
(3) If § < g in STIN, then ¢ < 2 in {h}~'N.

Proof. (1) We first suppose that (a,h) ~g (b,h). Then there exists
v € S such that

<at>ANh=<a >AhAv=<b >AhAv=<Db > Ah.
It follows that (a,h) ~y (b, h).

(2) By hypothesis, < a* > Ah =< b > Ah. Since h € S, we can
conclude that (a,h) ~g (b, h).
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(3) Since § < g in ST'N, we can conclude that there exists v € S,
such that
<a'>A<VU >AfAv=fAgA<a > A
It is clear that f AvAh=h=fAgAvAh. Then:

MN<a' >A<b > = <a>A<V>AfAVAR
= fAgAN<a'>AhAv
= hA<a >,
. b - _
ie. # <2 in {h}7'N. O

Proposition 4.7. Let S be a meet closed subset of Fsub(N), and h =
NS. We define ¢ : SN — {h} "IN with ¢($) = &. Then we have
the following conclusions:

(1) ¢ is an onto meet-semilattice homomorphism.
(2) If h € S, then ¢ is one to one. In particular, this shows if
h €S, then STIN = {h} "IN as meet-semilattices.

Proof. (1) By Lemma 4.6, ¢ is well defined, and it also preserves the
order. Let %, § € S7IN. Then, by the proof of Proposition 4.3,

b) (a/\b) alb a/\b <a)/\ (b)
g fAg h - h h f g
Therefore, ¢ is an onto meet-semilattice homomorphism.
(2) Let §, 5 € ST'N, and ¢($) = ¢(2). Then § = } and
<a'>AhANg=<a >ANh=<b >ANh=<b >NAfAh,

for every ¢t € (0,1]. Since h € S, we can conclude that ¢ = g, which
followes that ¢ is one to one. 0

90(% A

Proposition 4.8. Let N be a nexus over v, and let S be a meet
~ =~
closed subset of Fsub(N). If h = NS, then {h}"'N = | h as meet-
~ =N
semilattices, where | h = {hA\ < a' >;a € N}.

=
Proof. We define ¢ : {h}'N — | h with p(%) =< a' > Ah. For
every a,b € N,
a b a b

a_? 1 — 1 — —
;=5 =><ad > Ah=<b >Ah:>g0(h) SO(h)-

Hence, ¢ is well defined. It is clear that ¢ is onto. Now, let 7 # % We
show that (%) # ¢(£). Since & # 2, there exists ¢ € (0,1], such that
< a' > Ah #£< b > Ah. If t =1, then (%) # ¢(£). Let t < 1 and
< a' > Nh =< bl > Ah. For every z € N,
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(1) If a,b €1 z, then < a' > (z) =t =< b > (z), which follows
that (< a' > Ah)(x) =t Ah(z) = (< b > Ah)(x).

(2) If a,b &1 x, then < a' > (x) = 0 =< b' > (x), which follows
that (< a' > Ah)(x) =0 = (< b' > AR)(z).

(3) If a €1 = and b &7 z, then
h(z) = 1Ah(x)
= (<a'> Ah)(2)
= (< b' > AR)(z)
= 0AR(z)
= 07

which follows that (< a’ > Ah)(z) =0 = (< b' > Ah)(z).
(4) Similarly, if a ¢7 = and b €1 x, then

(<a" > Ah)(z) =0= (< b > Ah)(2)
Therefore, < a* > Ah =< b > Ah, which is a contradicition. Then

< a' > Ah #< b' > Ah. Hence ¢ is one to one. Let ¢, 2 € {h}~'N.

Then, by Proposition 3.15 and the proof of Proposition 4.3,
p(EA) = o(%h)
<(anb)!>Nh
= (<a' > AR) A (< b > AD)
= o(F) Ae(R)-
Therefore, ¢ is a meet-semilattice isomorphism. 0

Corollary 4.9. Let N be a nexus over vy, and let S1, S5 be meet closed
subsets of Fsub(N). If NS1 = \ Sy € S1 NSy, then S;*N = S;'N as
meet-semilattices.

Proof. By Propositions 4.7 and 4.8, it is clear. O

Proposition 4.10. Let N be a nexus over~y, and {()} # X C N\{()}
be closed under finite meet. Then for every t € (0,1], S; = {< a' >
la € X} is closed under finite meet, and there exists b € X, such that
<b>=NA\S;.

Proof. By Proposition 3.15, S; is closed under finite meet. Since X C
N, and X is closed under finite meet, we can conclude from Corollary
2.8 that there exists b € X, such that b = A\ X. By Proposition 3.17,
< >= Ny <a' > O
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