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Abstract

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of
induction motors. The uncertainty including parametric variations, the external load disturbance and
unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of
this paper is presenting a stability analysis for neuro-fuzzy speed control of induction motors. The online
training of the neuro-fuzzy systems is based on the Lyapunov stability analysis and the reconstruction errors
of the neuro-fuzzy systems are compensated in order to guarantee the asymptotic convergence of the speed
tracking error. Moreover, to improve the control system performance and reduce the chattering, a PI
structure is used to produce the input of the neuro-fuzzy systems. Finally, simulation results verify high
performance characteristics and robustness of the proposed control system against plant parameter variation,
external load and input voltage disturbance.
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1. Introduction

In the last few decades, the speed control of
induction motors (IMs) has been the focus of
widespread researches [1-6]. However, the closed
loop control system stability has not been
guaranteed in most of these researches. Moreover,
the asymptotic convergence of the speed tracking
error is very important in most industrial
applications and should be mathematically
guaranteed. To solve this problem, many
Lyapunov based control algorithms for IMs have
been presented in the literature [7-9]. However,
these researches have focused on the position
control of induction servo motors and the
boundedness of fluxes and currents has not been
guaranteed. Recently, a speed control system with
stability analysis has been presented based on the
sliding mode control [10]. In that research,
boundedness of fluxes and currents is guaranteed
using some limiters. However, the proposed
control law contains the sign function which may
cause the undesirable chattering phenomenon.
Thus, presenting a continuous control law with
stability analysis is required. Model based control
approaches, such as feedback linearization, are

very popular and attractive. However, they are not
suitable for IMs due the variations of the external
load disturbance. To enhance the performance of
feedback linearization and overcome uncertainties
including parametric uncertainty, un-modeled
dynamics and external disturbances, considerable
researches have been carried out in the field of
adaptive and robust control [11-16]. Adaptive
control can overcome parametric uncertainty [17],
while robust control can compensate both
parametric and nonparametric uncertainty. In
order to design an adaptive control law, the
structure of the system dynamics should be
available. In other words, the regressor vector
should be known. Thus, conventional adaptive
control laws may not be successful for
complicated systems with unknown dynamics.
Although  robust control can  overcome
nonparametric uncertainties, but the upper bound
of uncertainties should be known [18].
Overestimation of this bound will increase the
amplitude of the control signal and consequently
may damage the system. On the other hand,
underestimation of this bound will deteriorate the
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system performance by increasing the tracking
error [19,20]. Moreover, in some robust control
approaches, such as sliding mode control, the
control law is discontinuous which may result in
the chattering phenomenon [21].

In order to improve the performance of adaptive
or robust controllers, many researchers have
applied artificial intelligence. Various neural
networks and fuzzy systems are widely used in
adaptive and robust control [22-26] due to their
universal  approximation  property.  These
researches can be considered as different efforts
made toward common objectives which are
estimation and compensation of uncertainty.
Generally, adaptive neuro-fuzzy approaches can
be classified into two main groups: direct and
indirect. In direct approaches, an adaptive neuro-
fuzzy system is designed to approximate the ideal
control law, while in indirect methods, first the
unknown nonlinear dynamics of the systems are
identified and then a control input is generated
based on the universal approximation theorem
[27]. According to this theorem, neuro fuzzy
systems can approximate any nonlinear functions
with arbitrary small approximation error. An
adaptive fuzzy speed control of IMs is presented
in [22] in which the gains of the sliding mode
controller are adjusted by a fuzzy system and the
centers of fuzzy sets are updated by an adaptation
law: the gain adjustment to compensate the
uncertainty and the centers updating to reduce the
control effort chattering. A multivariable adaptive
fuzzy speed controller for IMs is proposed in [23]
where the approximation of the nonlinear
parameters in the feedback linearization control
law is based on fuzzy logic. The advantage of this
paper in comparison with previous related works
is that it does not need any prior knowledge of
plant dynamics. In [24], an adaptive speed control
using a neural network representing the feedback
linearization law has been presented. Also an error
compensator is added in order to compensate the
approximation error between the neural network
and the feedback linearization law. In [25]
adaptive neuro-fuzzy systems for speed control of
IM have been represented. In the designed neuro-
fuzzy scheme, neural network techniques have
been used to choose a proper rule base, which has
been achieved by using the back propagation
algorithm. This integrated approach improves the
system performance, efficiency, reliability, cost
effectiveness and dynamism of the designed
controller. ~ Zerikat and Hekroun [26] have
improved an adaptive speed control of a hybrid
fuzzy neural network for a high performance IM
drive to increase the performance and robustness

of the IM drive under nonlinear loads and
parameter variations.

In this paper, a novel speed controller for IMs has
been presented. The control law is proposed based
on feedback linearization technique. Two neuro-
fuzzy systems have been designed to estimate the
unknown nonlinear functions required in the
control law. As mentioned before, many speed
control approaches for induction motors have
been presented in the literature without stability
analysis.  The contribution of this paper is
presenting a rigorous mathematical stability
analysis for neuro-fuzzy speed control of
induction motors. The adaptation laws for training
the parameters of neuro-fuzzy estimators are
derived from the stability analysis in which the
boundedness of fluxes and currents has been
guaranteed. In order to guarantee the asymptotic
convergence of the speed tracking error and
improve the control system performance, the
reconstruction errors of neuro-fuzzy systems have
been compensated using a robustifying term in the
control law. Recently, some algorithms have been
proposed in the literature for the compensation of
the reconstruction error. These algorithms result
in discontinuous control laws due to the existence
of the sign function, which may increase the
possibility of the chattering phenomenon [28-33].
As an advantage over these approaches, this paper
presents a continuous robustifying term.
Moreover, simulation results show that the
proposed  controller  represents acceptable
robustness against variations of the external load
disturbance. In addition the controller is capable
of fast disturbance rejection due to the undesirable
effects from the input voltage.

This paper is organized as follows; Section 2
describes the IM model. Section 3 presents the
proposed control law and stability analysis.
Simulation results are given in section 4 and
finally, section 5 concludes the paper.

2. Induction motor model

The fifth-order model of an IM under the
assumptions of equal mutual inductances and
linear magnetic circuit is given by:

di . (1-a)
d_;:a =—Ql, +ay, t,oy,, +aU,

dy, (1)
E =—Qly, +ay,, -0, +aUg

dy.. _ R R \ri (1-c)
T = _:l//ra - npa"//rb + : Mlsa

dy, R R . 1-d
%z_ry/rh +nprra+L_Mlsb ( )

T T
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do an i A TL (1‘e)
—= iy, —yl,)——

dt \]Lr (l//ra sh l//rb sa) J

where, U, i, T, and y indicate stator voltage

input to the machine, current, external load torque,
and flux linkage respectively; the subscripts r
and s stand for rotor and stator; (a,b) denote the
components of a vector with respect to a fixed
stator reference frame and, a:l—(leLsL,),

a,=(MR +L’R)/ (L), a,=1/(oL,)
a,=(MR)/(oL,L?), a,=(n,M)/(oLL,) , [34-37].

3. The proposed control scheme

Consider the following general form of nonlinear
systems

X, = f,(X)+9(X)u )

in which f(X) and g(X) are unknown
nonlinear functions and X is the state variable
vector  defined as X =[x x, x,] -
According to (1), it is clear that

X=[i, iy W. ¥, o is the state vector of
this system. The time derivative of (1-e) is
@=h(X,t)+g(X,t)u (3)
in which u is the input voltage amplitude of stator
and h(X,t) and g(X,t) are

h(X, ) =D, (i, +igpW,)

+ bl(isal//rb - isblr//ra) + b2 |l//r

NG

. 2 . 2
g= CO ?Wra (Sln(at _?) _Sln(at+?))

i (4)

Q)

—c,(2sin(at)-sin(at —%ﬂ) —sin(at+2?”))

in which || =y} +vh, b =-("iM@)/ (L),

Rn M a
=2 ta—2, b=—n*M2w/(cIL?),
L aoJa3 2 (k)
= M and CFM . Based on feedback
oL L, 3oL L,

linearization, consider the following control law:
@, +kie+k,e—h(X,t)
U=

90D ©
in which e=w, —w is the speed tracking error
andk,, k, are design parameters. So for
implementation of the control law, the

acceleration signal @ is required and because this
feedback is contaminated with noise, the
performance of control system is deteriorated. In
order to reduce the system order and remove the
acceleration feedback we can rewrite the (3) as
follows
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o=h(X,t)+g(X,hu+o—-a (7)
which can be shown in form (2) as:
w=f(X,t)+g(X,t)u (8)

in which f(X,t)=h(X,t)+@—-d andg(X,t) are
unknown nonlinear functions. Based on feedback
linearization, consider the following proposed
control law:

9)

—f(X,0)+a, +ke+k jedt+ur
a(x.t)
in which @, is the derivative of reference speed o,

, €=, —w is the speed tracking error, Ky k, are

design parameters, f (X,t) and ¢(X,t) are the
neuro-fuzzy estimations of f(X,t) and g(X,t),
and u, is the robustifying control term to
compensate the reconstruction errors of the neuro-
fuzzy systems f and§. The structure of the
speed control system is illustrated in figure 1 in
which V, is the undesirable disturbance of the
input voltage.

@)‘I—‘

NF
proximat

NF
proximat

Error

lompensatpr

Induction |- U Park
Motor |4 usa Transform
sh

Figure 1. The structure of proposed control system.
In figure 2 the signal propagation in each layer of
neuro-fuzzy estimators is illustrated. In this figure
S=[s, s, s,]' is the input variable vector
and 4 (s)=exp[~(s —m))*/ (o})] is the
Gaussian membership function, in which m/ (
i=1..n andj=L1..,N) is the mean of the
Gaussian function in the j term of the i" input

variables,, and o/ is its corresponding standard

deviation. In this paper each input variable has
two linguistic fuzzy sets as negative and positive

thus, N issetto 2. Also in the k™ node in the
rule layer (k=1,...,p), the fuzzy AND operation

determines the output by multiplying the input

signals as & (S) =] [wis'(s) where w is
i=1
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unity weights between the membership layer and
the rule layer, and p is the number of rules.

p
Yy, = Zeokgfk (S) is one of the overall outputs that
k=1

is the summation of its inputs by considering
related weights 8, way to comply with the journal
paper formatting requirements is to use this
document as a template and simply type your text
into it.

4

Layer

Membership,
Layer

Input S .
Layer |71

Figure 2. The structure of the neuro-fuzzy approximators.

In this paper, f(X,t) and §(X,t) are estimated
using two neuro-fuzzy systems. The input of each
system is given by the PI structure shown in
figure 1. This filter is very common in the speed
control of electrical motors and often improves
the tracking performance of the controllers. The
input-output relation of this filter is described by

s(t) = ke(t) +k, J;e(r)dr in which k_and k, are

positive tuning parameters. In this paper, the input
and output of neuro-fuzzy systems are scalars.
Thus, we can write the output of neuro-fuzzy
approximators as follows:

y=0"¢ (10)

where, 9=[6,,6,] is the consequent adjustable
parameter vector and &=[&,&,]" . From (8), the
closed loop equation is given by

o, —o=a,—T(X,t)-g(X,t)u (11)
Substituting u from (9) into (11) yields
e+k,e+k fe=(f —f)+(G-gu-u, (12)
According to (10), it follows from (12) that
¢=—k,e—k [edt+(f —0,)"¢ (13)

+(0,-6,) nu-u,

By defining E = Uedt e]T , we have:
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E:AE+B{(f—f)+(@—g)u—ur} (14)

in which A{ 0 i }andgzm. Suppose that
1 " Rp 1

f =6, & and

approximations of f andg . Therefore,

g =6, n are the best

E:AE+B{f—f*+(g—g*)u+g—ur} (15)
where, e=[f"—f]+[g'-glu is the
reconstruction  error  (approximation  error).
According to the universal approximation

theorem, ¢ is bounded as |&|<p and it is
assumed that p is a positive known constant. By
defining 8, =9, —6; and 8, =6, -6,
E=AE+B{0,"¢+0,nu, +&-u,|

Theorem 1. Considering the nonlinear system (8)
and the control law (9), if the following conditions
are met, the internal signals in the control system

are bounded and the tracking error converges to
zero asymptotically:

0, =—y,ETPB&

(16)

(17)

0, =—y,E"PBu (18)

Proof. Consider the following positive definite

function

L=tepe+ 14,70, +iégTég
2 2y, 2y,

The time derivative of (19) is:

L:%(ETAT +{§Téf +un' 0, +g—u,})PE

(19)

+%(ETP(AE+b(éfT§+0~gT77U+8—Ur))) (20)

A

9 9

4,76,
+—
71 72
According to the Lyapanove equation
ATP+PA=-Q . Since the matrix A is a Hurwitz
matrix, we can use this equation and simplify (20)
as

L=E"PB(6,"¢+8, nu+s-u,)

N 6,76, . 6,76, —EETQE (21)
" 72 2
In other words
- Y
L=—1ETQE+ E'PBY,TE+
2 7
AL (22)

~ 0.0
+[ET PBY, nu + ——2 J+ E"PBe
V2

~E"PBU,
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Using (17) and (18), (22) can be simplified as

L= _?1 E'QE+E"PBs—E"PBu, (23)
Since |&| < p it follows from (23) that
Lg%lETQE +|E"PB|p—E"PBU, (24)
Define z=E"PB thus

L< _?1 E'QE +|z| p—zu, (25)

According to [18] we can propose the robustifying
term as
Zp
U =—/—7+
" lz+ 27
in which 2and £ are constant positive scalars, so
2

(26)

I Z°p
After some manipulations, we can write
R | |z| 267"
LS*XT X+ 00—+
2 P e (28)
Since  vasb>0: -2 <p<a we have
a+b
z| e ™
||— < e™*, therefore
|z|+ 26"
L< _?1 E'QE + ple™” (29)

According to [18], (29) indicates that speed
tracking error asymptotically converges to zero.
To ensure the boundedness of internal dynamics

of IM includingi,,, i,, ¥, and v, , according to
(1) we can write
X, = AX, +V(t) (30)
in which
Xl = [isa isb l//ra l//rb]T (31)
1 1 '
v(t) = oLl Ug Euw 00 (32)

and A is given in (33). Since the eigenvalues of
A are negative, the state vector X, in X, = AX,
is exponentially stable. Moreover, the control law
(9) is bounded. Thus, the vector v(t) is bounded.

Consequently, the system (30) can be considered
as a stable linear system with bounded inputs.

MR, n,M
-a, > 1)
oL olLL,
n,M MR
L T BT
o o2
A= ST S T (33)
R.M R,
0 - -N,o
L, L,
R M R
0 . n,® -—L
L LT LT _
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4. Simulation results

To make the superiority of the proposed method
more obvious, its performance is compared with
the controller designed in [23]. In Simulation 1
the proposed neuro-fuzzy control algorithm has
been tested and Simulation 2 presents the
performance of the adaptive fuzzy MIMO
controller [23].

4.1. Simulation 1
Consider a three-phase standard
parameters given in the table 1.

IM  with

Table 1. Rated parameters of case study induction motor.

P Power 3 (KW)

f Frequency 60 (Hz)

\Y; Rated voltage 380 (V)

| Rated current 6.9 (A)

n, Number of pole pairs 2

R, Stator resistance 1.115 (Q)

R, Rotor resistance 1.083 ()

L, Stator inductance 0.005974 (H)
L, Rotor inductance 0.005974 (H)
M Mutual inductance 0.2037 (H)

J Total inertia 0.02 (kgm2)

To test the control system robustness against the
thermal variation of motor parameters and
external load disturbance, it is assumed that

R, =R,,(1+0.2sin(t))

R, =R,(+0.2cos(t)) Q

L, =L,@+0.1sin(t)) H (34)
L, =L,(@+0.1cos(t)) H
and
2NM  t<12
T, ={8N.M 12<t<17 (35)
3NM  t>17

In this paper, in order to examine the speed
regulation capability in response to sudden
variations of the speed command, @, has been

defined the summation of the constant value 155
and a square wave (altitude = 10, frequency = 0.1
Hz). Also by using a proper reference model the
transient response of the speed control system has
been regulated. Finally, in order to verify the
ability of the proposed control law in rejecting
input voltage disturbances, the following voltage
disturbance has been inserted to u.
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15V 8<t<9 of the input voltage. Finally the control effort is
st :{O V  otherwise (36) presented in figure 6.
Tracking error
The initial values of g, and ¢, in neuro-fuzzy B

systems have been set to 1. Moreover, the learning
rates of adaptation laws (13), (14), the

0
proportional gain K and K, in (5) have been :

Iput voltage disturbance

selected as 5 =1000,7,=0.1,K =20 and

K, =100. Also 2 and £ in (22) have been set to

/lLoad {orque vaat
1 and 0.1 respectively. The upper bound of the /
reconstruction error has been assumed as p=1. \ \

0 .
The tracking performance of the proposed control f
scheme and the speed tracking error are illustrated
in figure 3, figure 4 and figure 5.

Speed response 0 5 o 5 2 5
e Time (sec)

ion

Error (rad/sec)
=]

&

0
1

Figure 5.asymptotic convergence of tracking error.
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| ’ \‘\ 4
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n
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Figure 3.The tracking performance of the proposed % ; 0 5 2 %
control scheme. Time (sec)
Dashed cicle of Figue 3 Figure 6. The control effort.
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Figure 4. Dashed circle of the Figure 3 is zoomed. 5
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As shown in these figures, the asymptotic Figure 7. The value of modules for stator current and flux
convergence of the motor speed to the command in the control system.

signal is satisfying in terms of fast external load
disturbance rejection and robustness against motor
parameter variation and undesirable disturbances

Moreover, as illustrated in this figure, the motor
voltage is under the maximum permitted voltage.
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In addition, based on table 1 the amplitude of

stator current +[i,” +iy,? must be less than 6.9 A.

Also the flux upper limit can be computed by
multiplying flux density to pole cross section that

achieved 0.48 so in this machine the «fl//raz +yy

value must be less than or equal 0.48. In the
meantime, figure 7 shows bounded closed-loop
signals for the proposed control system.

4.2. Simulation 2

In this simulation, the adaptive fuzzy MIMO
control presented in [23] is used for the speed
control of the IM model described in Simulation
1. The reference model, external load torque, and
input voltage disturbances are the same as
Simulation 1. The tracking performance of this
control scheme is illustrated in figure 8 and figure
9. As shown in figure 9, this control approach
fails in rejecting the external load torque and input
voltage disturbances. However, as shown in figure
4, the proposed method completely eliminates the
effect of these disturbances. It should be noted
that the adaptive fuzzy MIMO method [23],
requires feedbacks from all state variables and
also the acceleration signal is used, while the
proposed controller needs just the speed feedback.
Moreover, there are six uncertain functions which
should be estimated in the adaptive fuzzy MIMO
method. In order to estimate each function, 243
fuzzy rules are needed. However, the neuro-fuzzy
approach presented in this paper is much simpler
and less computational. In addition, the non-
singularity of the estimated input gain matrix in
[23] is a critical condition which can be violated
easily and make the control system unstable.
Another superiority of the proposed controller is
compensating the reconstruction error of the
neuro-fuzzy estimator which has improved the
performance of the controller. The cost function

J= IjOeZ(t)dt has been defined for quantitative

comparisons. In the proposed method J=3.137
while the method presented in [23] results in
J =6.457.

5. Conclusion

Speed control of induction motors is very
important in many industrial applications such as
pump actuators, milling machines and elevators.
In this paper an indirect adaptive system for the
speed control of IMs is presented in which the
uncertainty including parametric variations, the
external load disturbance and unmodeled
dynamics is estimated and compensated by
designing two neuro-fuzzy systems with online
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training approaches based on Lyapunov stability
analysis. In order to guarantee the asymptotic
convergence of the speed tracking error and
improve the control system performance, the
reconstruction errors of neuro-fuzzy systems is
compensated using a robustifying term in the
control law. Finally, high  performance
characteristics and robustness of the proposed
control system against plant parameter variation,
external load and input voltage disturbances are
verified by the simulation results.
Speed response

105,
19

//,,, \\\:

\ /)

Iput voliage disturbance \

Laad torque variation

—
=
&

Speed (rad/sec)
Py
<3

e
&

— Reference tiaectory

—Tracking response
I
0 5 10 15 il %
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Figure 8. The tracking performance of the adaptive fuzzy
MIMO method [23].
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Figure 9. Dashed circle of the Figure 8 is zoomed.
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