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Abstract 
In this study, an ore grade estimation model was developed based on image processing and pattern 
recognition techniques. The study was performed at a limestone mine in central part of Iran. The samples 
were randomly collected from different parts of the mine and crushed down (from 10 cm to 2.58 cm). The 
images of the samples were taken in an appropriate environment and processed. A total of 76 features were 
extracted from the identified rock samples in all images. Neural network was used as an intelligent tool for 
ore grade estimation. First, six principal components derived from principal component analysis were used 
as input of neural network and four grade attributes of limestone (CaCO3, Al2O3, Fe2O3 and MgCO3) were 
used as the output. The root of mean squared error between the observed values and the model estimated 
values for the test data set were 0.38, 0.84, 0.15 and 0.03; the R2 values were 0.78, 0.76, 0.76 and 0.81 for 
the mentioned chemical compositions respectively. The value of R2 indicates the correlation between the 
actual and estimated data. It can therefore be inferred that the model could successfully estimate the 
percentage of chemical compositions of the samples collected from the same mine.  

Keywords: Image processing; neural network; ore grade; prediction; limestone 

1. Introduction 
Vision-based systems have great success in the 
mineral industries [1]. A study conducted by 
Oestreich et al. (1995) demonstrated the use of an 
online sensor for mineral composition 
identification [2]. Petruck and Lastra (1993) have 
determined mineral grade values on a microscopic 
scale by image processing technique [3]. 
Shafarenko et al. (1997) used an image-based 
technique to inspect the quality of granitic rocks 
[4]. Casali et al. (2000) carried out an ore grind-
ability analysis based on vision systems [5]. Ore 
textural analysis using the image processing 
techniques was performed by several investigators 
[6, 8]. The main scope of these studies was to 
estimate average particle size and various ore type 

identification in the industrial ore feeding systems 
[9].  
In most cases, the ore grades are determined by 
manually collecting samples from ore material 
and analyzing them chemically in a laboratory. 
The sample collection, preparation and chemical 
analysis are tedious and time-consuming 
operations. In this situation, a vision sensor might 
be a useful technology for grade quality control 
[10]. Chatterjee et al (2006) developed a vision 
system based on a neural network that was trained 
by the image features to estimate the grade of 
chemical compositions in a limestone mine [10]. 
In this paper, the effects of different combination 
of image features on the chemical grade 
determination were considered. Schematic  
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Figure1. A schematic diagram showing the stages of the image processing based grade estimation

diagram of the methodology applied in this study 
is shown in Figure 1. 

2. Methodology 
2.1. Image processing 
One of the critical phases in image processing is 
an appropriate acquisition of the images. The 
images should be taken in a controlled and stable 
environment to avoid the influences of extraneous 
factors. Several preprocessing algorithms are 
available for removing unwanted noise and other 
artifacts produced in images during their 
acquisition. The average and the median filters are 
suitable for noise reduction in the images [11]. 
The median filter can especially eliminate the 
effect of high magnitude noises. In this study, a 
median filter has been applied, which sorts the 
pixels in a       region and replaces the central 
pixel with the median value. 
Image segmentation is a technique that subdivides 
an image into its constituent regions or objects. 
The level to which the subdivision is carried out 
depends on the goal of the segmentation process 
[11, 14]. The manual digitization technique is one 
of the easiest image segmentation techniques, but 
it is tedious and time-consuming. Graham et al. 
(2005) suggested that no single image 
segmentation technique is perfect for segmenting 
the grain samples from their neighbors [15]. A 
particular segmented region might contain more 
than one rock sample. Thus, individual rock 
samples should be identified with labels from the 
segmented image. 
For object identification, a region labeling 
algorithm has been used [16]. Typically, a region 
labeling algorithm examines each pixel in a 

mapping, and compares its value to those of its 
neighbors. If the pixel value is close enough to its 
neighboring values, then it is assumed to be in the 
same region as those of the neighbors. For the use 
of a regional labeling algorithm, a binary image is 
scanned from the top left to the bottom right. The 
first object pixel (i, j) encountered in the image is 
assigned a unique label. This label value is 
propagated and the region is grown to those 
pixels, which possess the same pixel value as that 
of the (i,j) pixel using the 8-neighbours 
connectivity method [14]. In the next step, the 
eight neighbors of those previously labeled pixels 
are examined and those which have the same pixel 
value are labeled.  
After the regional labeling, the original gray 
values of the labeled objects are then 
superimposed on the segmented images so that 
each object has its original gray value with the 
background value set to zero [17]. The rock 
samples properties in the image are described by 
various features. Therefore, the next step of the 
image processing is to extract different features 
from the individual objects. The features are 
characterized by three categories: color, 
morphology and texture. One of the most 
important properties for distinguishing limestone 
is its color [18]. The color feature is characterized 
by the intensity levels of its seven color 
components, namely r, g, b, H, S, I, and gray [11]. 
The texture and morphology features of lime 
stones vary with the depositional variability and 
weathering of the limestone beds [18]. For 
example, for the limestone mine under 
investigation, it has been observed that the shape 
of Dolomitic limestones become somewhat 
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spherical after blending, but pure limestone 
obtains an elongated shape after crushing. It is 
very likely that, if these features are extracted and 
mapped with proper modeling, then they might 
have some relationships with rock type properties 
as well as their grades [10]. 
In order to calculate the features of an image, 
assume that the number of distinct rock objects in 
an image is n and the numbers of features 
extracted from each rock chips is M. Then, the 
feature value xi for that image is calculated by the 
weighted average of different rock object features 
present in the image. 

   ∑   
 

   
    

 

 
 

(1) 
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where j=1,2,…,n; i=1,2,….,M,        is the ith 
feature of jth rock object from a given 
image.                is the number of pixel in the rock 
object j. 

2.2. Feature vector reduction 
The large number of extracted features yields a 
high-dimensional feature vector. In addition, some 
of these features might be correlated with each 
other. High-dimensional feature vector might 
cause redundancy in data analysis. The redundant 
features can be discarded with preserving 
important information by the use of dimension 
reduction techniques on the feature vector. The 
dimension reduction techniques employed in this 
study is the Principal Component Analysis PCA 
[22]. Principal Component Analysis (PCA) is one 
of the most widely used methods for reducing the 
dimension of a multivariate data set. It transforms 
a group of correlated features into the principal 
components (PCs), using a linear transformation. 
It is possible to extract as many PCs as the number 
of features, in the feature vector. Then PCs are 
orthogonal and are sorted based on their variance 
quantity in descending order successively. The 
variances of the last few PCs do not have a 
significant contribution to the total data variance, 
and can be eliminated. Therefore PCA is an 
effective means for reducing the dimensionality of 
feature vectors. 

2.3. Neural network for ore grade modeling 
In this research an attempt has been made to find 
out the relationship between various image-based 
rock features with the grades, using neural 
network techniques. Estimation of ore grades is 
carried out using the feature vectors (after 
dimension reduction) as inputs to a neural 

network model that defines the relationship 
between ore grades and feature vectors. 
Artificial neural network is a modeling tool with 
the ability to learn the complex inter-relationship 
between the input and the output variables of 
multi-dimensional data [23, 25]. The multi-layer 
perceptron neural network MLP model is a 
popular model that has been used in this study. 
During the learning phase, the network is learned 
with a group of known image features and grade 
values. Using an optimal learning algorithm, the 
connection weights that connect the neurons of 
different layers are modified iteratively. After 
some iteration, they become adjusted in such a 
way that when the input image features are 
presented, the network produces grade outputs, 
which are close to their actual output values. 
Detailed descriptions of neural networks are 
beyond the scope of this paper. The reader is 
referred to proper references [23, 25].  
The Levenberg-Marquardt algorithm was used for 
error minimization. The learning basically starts 
with an untrained network, presents a training data 
(here PCs of image features) to the input layer, 
passes the signals through the network, and 
determines the output (grade attributes) at the 
output layer. These outputs are compared with the 
target values and any observed differences 
between these two correspond to an error. The 
error value is a function of the weights and is 
minimized when the network outputs match the 
desired output. The weights are thus adjusted to 
reduce this measure of error. The error on a 
pattern is given by: 

 ( )  
 

 
∑(     )

 

 

   

 
 

 
       

 
(2) 

where t and z are the actual grades and the 
network output grades, and c is the number of 
grade attributes. The weights are initialized with 
random values, and are then changed in a 
direction that will reduce the error [23]. The 
Levenberg-Marquardt algorithm is a very simple, 
but robust method for approximating a function. 
Basically, it consists in solving the equation: 
 

(JtJ + λI)δ = JtE (3) 

where J is the Jacobean matrix for the system, λ 
denotes the Levenberg's damping factor, δ  
represents  the weight update vector that we want 
to find and E is the error vector containing the 
output errors for each input vector used on 
training the network. The δ tells us that how much 
we should change our network weights to achieve 
a better solution. The JtJ matrix can also be 
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known as the approximated Hessian. The λ 
damping factor is adjusted at each epoch, and 
guides the optimization process. If reduction of E 
is rapid, a smaller value can be used, whereas if an 
epoch gives insufficient reduction in the residual, 
λ can be increased.  
The Jacobean is a matrix of all first-order partial 
derivatives of a vector-valued function. In the 
neural network case, it is an N-by-W matrix, 
where N is the number of entries in our training 
set and, W is the total number of parameters 
(weights + biases) of our network. It can be 
created by taking the partial derivatives of each 
output in respect to each weight. In traditional 
Levenberg-Marquardt implementations, the 
Jacobean is approximated using finite difference 
approximation technique. However, for neural 
network, it can be computed very efficiently using 
the chain rule of calculus and the first derivatives 
of the activation functions. Hence, the adjusted 
weights are used to calculate the error term for the 
next iteration. The process is repeated in the same 
manner and stopped when the error reaches a 
threshold value. After completion of the training, 
the model can be used for estimation purposes. 
One of the critical aspects of neural network 
modeling is the development of a generalized 
model. The generalization is defined as 
applicability of a model for the data sets except 
training data. The neural network model is very 
flexible and, therefore, powerful enough to 
capture any complex relationship between the 
input and the output variables [24]. A neural 
network modeler always tries to build up a 

generalized model with a given data set. A model 
calibration exercise is a good practice to obtain 
generalized model [24]. 

3. Case study 
3.1. Data collection 
The study was carried out in a limestone mine 
situated in the central part of Iran. The mine is 
located in Southeast of the Shahmirzad and East 
of the Darband in the Semnan province. Soltanieh 
formation consisting dark gray dolomite with thin 
bedded limestone and Elica Formation with light 
gray limestone exposed in different parts of the 
studied mine. Altogether 30 samples were 
collected from different parts of the mine. The 
samples weighed approximately 5 kg, and the size 
range varied from 25 to 30 cm. After sample 
collection, they were crushed with Jaw crusher 
and sieved. The 2.58-10 cm fraction was selected 
and examined. 
The percentage of CaCO3, Al2O3, Fe2O3, and 
MgCO3, were determined using Titration method 
for all the rock samples. In addition, the rocks' 
thin sections were studied under polarization 
microscope to identify the type of minerals. All of 
samples consisted of dolomite, calcite and their 
compositions. No other minerals were found in 
thin sections. Table 1 illustrates the range of 
chemical composition percentage, and the type of 
rock samples from the lithological composition 
point of view regarding their macroscopic visual 
features. 

 
Table 1. Percentage of chemical composition and lithological description 

 
 
 
 

Lithological 
Description 

limestone Dolomitic limestone Dolomitic mixed high 
calcium limestone 

-Micro crystalline 
-Massive 
-Obvious calcite veins 
-Obvious veins filled  with 
solid solutions 
-Light Milk-White, pink 
and gray in color 

-Coarse crystalline 
-Porous 
-Brittle 
-Dark gray with dark 
brown and red spots 

 

-Micro crystalline 
-Slightly porous 
-Brittle 
-Milk-whit and dark gray 
with gray and brown spots 

 

 
Chemical 

composition 

CaCO3 80-98% 42.8 -57% 57.7 -62.4% 
Fe2O3 0.05-0.28% 0.19 -0.45% 0.16 -0.27% 

Al2O3 0.06 -0.96% 0.13 -1.25% 0.23 -0.9% 

MgCO3 0.84 -17.22% 41.16 -54% 36.12 -40.32 % 

 
3.2. Image acquisition 
To avoid the influences of extraneous factors an 
identical condition is developed for image 
acquisition in this work. The image acquisition 
system consists of four wooden plates, two 9Watt 
lamps as illumination system, a digital camera 
(DMC-LC 50 Panasonic) and a computer. Since  
 

 
the lighting type, the location and the color quality 
are crucial for clear images, uniform diffuse 
lighting was used. The wooden plates were placed 
at 40 cm distance at the four sides of considered 
samples. The camera was placed in a stable 30 cm 
distance from the samples. The distance of lamps 
was 25 cm in all images. Two successive images 
for each sample were taken by changing the 

http://en.wikipedia.org/wiki/Hessian_matrix
http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Chain_rule
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placement and the orientation of the rock samples. 
The changing of position and orientation of the 
rock samples was done for two basic reasons. 
Firstly, if images are taken from one side of the 
rocks, extracted features may not be the true 
representative of the rock samples. Therefore by 
taking the images from different positions of rock 
samples, the generalization capability of extracted 
features will increase [10]. The size of images is   
                       and local resolution of images is 
0.15 mm /pixel. 

3.3. Image analysis of the samples 
After image acquisition the images were 
processed. As explained in 2.2, the preprocessing 
was carried out with a          median filter. In order 
to identify discrete regions representing rock 
samples, a hybrid segmentation technique was 
proposed. Figure 2 shows the different steps 
involved in segmentation technique. The 
theoretical discussion of the techniques is outside 
the scope of this paper. Interested readers are 
addressed to related text books [11, 14].  
A comparison between morphological features of 
image objects was done to evaluate the 
segmentation technique applicability. Mentioned 
morphological features are major axis length and 
minor axis length of 120 rock images that were 
identified based on manual segmentation and 
proposed segmentation technique. The mean 
error, the mean absolute error, the mean squared 
error MSE and the R

2
 values were used for 

comparison scope. Table 2 shows the error 
statistics of the major and minor axis lengths for 
all segmentation techniques. The mean error 
values are 0.315 and -0.35 pixels for major and 
minor axis length respectively. The corresponding 
mean absolute error value for the technique is 
16.89 and 43.31 pixels and the corresponding 
mean squared errors are 143.3 and 56.16.The 
statistical similarities between the actual values 
and the estimated values for the major and minor 
axis length were also tested for all the 
segmentation techniques. The t-statistics were 
performed for this purpose and the results are 
presented in Table 3. The t-statistics and their 
level of significance values, however, indicate that 
the mean values of the actual and estimated major 
and minor axis length are not significantly 
different. In view of above performance measures, 
it was decided that the segmentation technique is 
applicable to divide the individual rock samples in 
this case study. 
After a careful examination of all the images, 405 
distinct rock objects were identified. The features 
were then extracted from each of the individual 
rock objects. Altogether, 76 features were 
extracted. A list of the extracted features is 
presented in Table 5. In this table aspect ratio is 
described as the Major axis length divide to minor 
axis length. However, 76 features imposed a huge 
computational burden in the subsequent modeling 
for ore grade estimation. 

 

  
 

a b c 

  

 

 

D e f 

Figure 2. Sample images of different stage involved in proposed segmentation: (a) main image; (b) gray image ; (c) 

erosion and reconstruction  transformation; (d) gradient transform; (e) dilation transform; (f) segmentation. 

115442080
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Table 2. Error statistics of the segmentation technique 

MSE MAE ME 

minor axis major axis 

 

minor axis 

 

major axis 

 

minor axis 

 

major axis 

 

56.16 143.32 43.31 16.89 -0.35 0.31 

Table 3. Paired sample t-test between manual segmentation vs. automatic segmentation 

 

 

 

Mean 

 

S.D 

Mean 

Standard 

Error 

Critical limit  

t 

 

df 

 

Sig 
Upper Lower 

major axis 0.23 0.70 0.24 0.73 -0.42 0.61 119 0.23 

minor axis 0.31 0.45 0.35 1.05 -0.32 0.40 119 0.31 

 
In order to achieve the least number of features 
that involve most of the information, the relation 
between the variations of features was studied. 
In this way we computed Spearman correlation 
coefficient for all 76 features. Considering the 
correlation coefficients, the features that are 
correlated (with a correlation coefficient greater 
than 0.6) are grouped and only one of them is 
considered for the next steps. Therefore, 17 
independent features have been selected that are 
as follows: 

 Eccentricity of the ellipse that has the same 
second-moments as each rock samples. The 
value is between 0 and 1. A rock sample with 
an eccentricity of 0 is actually a circle, while 
a rock sample whose eccentricity is 1 
represents a line segment. 

 Mean, variance and skewness of red 
component of the pixels 

 range of variation for blue component that 
returns the difference between the maximum 
and the minimum amount of blue intensity 
for all pixels in a rock sample 

 inter quartile range (IQR) of blue component, 
that is the difference between the 75th and 
the 25th percentiles of blue histogram related 
to rock sample  

 mean, skewness and kurtosis of hue 
component of the pixels 

 skewness of saturation component histogram 

 inter quartile range of hue component 
histogram 

 inter quartile range of saturation component 
histogram 

 mode of saturation component histogram 

 mean absolute deviation (MAD) of intensity 
(x) component that can be expressed as:  

 MAD= mean (abs (            ))                                                                                
 

 

 contrast and correlation and energy of the 
pixels as texture features. Energy indicates 
the set of pixels homogeneity.  

The statistical parameters were computed for 
intensity of all pixels in a segmented rock. The 
variation of some statistical parameters for color 
component (for example IQR of red and blue and 
green) in different images is not interpretable and 
explainable. On the other hand, this variation for 
some statistical parameters like mean of color 
components for dolomite images is less than 
calcite images. Also the contrast, correlation and 
energy as texture features attempt to quantify 
intuitive qualities described by terms such as 
rough, silky, or bumpy in the context of an image. 
In this case, the roughness or bumpiness refers to 
the variations in the brightness values [11]. Al2O3 
and Fe2O3 in solution phase can affect the visual 
features of limestone like color and subsequently 
the texture features of the images could be also 
changed. 
After the extraction of features from each distinct 
rock object, the feature values for each of the 60 
images were calculated based on the methodology 
that described in Section 2.1. The PCA technique 
was also used to reduce the dimensionality of 
these features. From the PCA analysis, it was 
noticed that 90.66% of the data variance could be 
explained by the first six principal components. 
Hence, it was decided that the first six principal 
components captured from the image-extracted 
features should be retained. Table 4 shows the 
amount of data variance, percentage of data 
variance and cumulative percentage of data 
variance explained by the six principal 
components. Figure 3 shows the percentage of 
variance captured by first six principal 
components. All PCs are statistically independent 
and hence mutually orthogonal. Therefore, each 
PC bears independent information. The major 

xxi 
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contributory features and their factor loadings to 
each of the six PCs are as follows: 

 PC1: mean, kurtosis, skewness and IQR of 
hue, mean of red, energy 

 PC2: IQR of blue, MAD of intensity, 
skewness and variance of red, skewness and 
IQR of saturation, mean, IQR, range and 
skewness of hue, contrast, correlation 

 PC3: IQR and mode of saturation, IQR of 
blue, mean of red, skewness of hue 

 PC4: correlation, mode and IQR of saturation, 
energy, skewness of hue, IQR and range of 
blue, mean of red 

 PC5: skewness and kurtosis of hue, skewness 
of red, IQR of saturation, range of blue 

 PC6: skewness of hue, skewness and mode of 
saturation, contrast, mean of red 

3.4. Neural network model for grade prediction 
The multi-layer perceptron neural network (MLP) 
model was used for estimating the grades of the 
mineral from features. The network consisted of 
an input layer containing six input nodes 
(principal components), an output layer consisting 
of four output nodes corresponding to four grades 
attributes. The six principal components, as 
obtained from the PC analysis of image extracted 
features, were used as the input parameters and 
the grade attributes (CaCO3, MgCO3, Al2O3 and 
Fe2O3) were used as the output parameters of the 
neural network model. The grade values of these 
four mentioned attributes were determined 
following the ASTM standard [26]. The tansig 
activation was used both in the hidden and the 
output layers. The trainlm algorithm was used to 
train the network using the training data set. Also 
in order to design a generalized neural network 
model, in this study the model was calibrated 
using the early-stop training method. Early-stop 
training method used two data sets: (i) the 
training, and (ii) the calibration. The model was 
trained using the training data set and was 
calibrated using the calibration data set. However, 
the generalization capability of the model was 
tested using the testing data set. To prepare these 
three data sets, all of the data available to the 
neural network modeling was divided into the 
three data sets. For this purpose, images were 
randomly picked up and assigned to each of the 
three data sets in the proportion of 70:15:15 for 
training, calibration and testing sets. Thus, 41 
images were chosen for training, 9 images for 
calibration, and the remaining 9 images for 
testing. 
The quality of this random data division was 
tested by checking the statistical similarity among 

the three data subsets for all the input and the 
output parameters. To this end, the ANOVA  
F-test was performed to check the statistical 
similarities in mean values of the parameters for 
all the three data sets. The Levene statistics were 
also performed for the test of homogeneity of the 
variance [27]. The results of the statistical tests 
and their value of significance show that the mean 
and variance values of the parameters for the three 
data sets are not significantly different from each 
other. Therefore three data sets are reliable for ore 
grade modeling. Another important decision for 
neural network modeling was the selection of the 
number of hidden nodes and the learning 
parameters. The optimal number of the hidden 
nodes was manually determined by observing the 
mean squared errors of the model vs. the number 
of the hidden nodes. The results show that eight 
nodes in the hidden layer produce the minimum 
mean squared error in the training data set. 
After model development the generalization 
capability of the model was examined using the 
testing data set. The error statistics of the 
observed values and the model estimated values 
for the three data sets are presented in Table 6. 
The R

2
 values for the test data are 0.78, 0.76, 0.76 

and 0.81 for the grade attributes CaCO3, MgCO3, 
Al2O3 and Fe2O3 respectively. The magnitude of 
the coefficient of determination (R

2
) indicates the 

correlation between actual and estimated data. 
Therefore, it can be inferred that the model can 
satisfactorily estimate the mentioned chemical 
compositions of the limestone. 
Figure 4 (a–d) shows the scatter plots of the 

observed vs. model estimated values for all the 

four attributes. Regression lines were fitted for the 

observed vs. estimated values using the least 

square method, as can be seen in the figures. The 

high value of r-square in these plots show that 

there is high correlation between estimated and 

real values. A proper code for the estimation of 

grade and another one for image segmentation 

were written in (MATLAB 2009.a) software. 

4. Conclusion 

In this paper an image-based system was 

developed for grade estimation of rock samples 

with respect to their images features. The samples 

were collected from different parts of the studied 

mine. The images of each sample were captured, 

segmented and features were extracted from the 

segmented images. A total number of 76 features 

were extracted from the segmented rock samples. 

PCA was performed to reduce the dimension of 

features. Ultimately, six principal components 

were used for the grade determination from the 
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images using the neural network technique. The 

applicability of the designed model was tested 

using a testing data set at the model creation 

phase. The testing results show that the model was 

a good estimator for four grade attributes. The 

designed model is not applicable to other minerals 

directly. Before applying the model to other 

deposits, the neural network model must be 

trained with rock samples from that same deposit, 

and same type of image acquisition set up must be 

used. 
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Figure 3. Percentage of data variance captured by six principal components 

Table 4. Captured variance by first six principal components 

PC6 PC5 PC4 PC3 PC2 PC1 Principal component 

0.03 0.04 0.05 0.07 0.16 0.35 Data variance captured 

4.48 5.88 6.69 9.38 20.63 43.60 Percentage of data variance (%) 

90.66 86 80.12 73.49 64.17 43.54 Cumulative percentage of data Variance (%) 

Table 5. The number of extracted features from segmented rock samples 

Morphological feature Textural feature                 

(co-occurrence matrix) 

Color feature Color feature 

major axis length (1) contrast (4) kurtosis (7) mean (7) 

minor axis length (1) correlation (4) IQR (7) mode (7) 

aspect ratio (1) energy (4) MAD (7) variance (7) 

eccentricity (1) homogeneity (4) range (7) skewness (7) 

 

Table .6 Error statistics for different data set 

Training Data set Calibration Data set Testing Data set 
Component RMSE    RMSE    RMSE    

CaCO3 0.8 0.88 0.72 0.81 0.38 0.78 
MgCO3 0.85 0.82 0.02 0.74 0.84 0.76 
Al2O3 0.12 0.79 0.13 0.75 0.15 0.76 
Fe2O3 0.03 0.83 0.03 0.78 0.03 0.81 
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Figure 4. Scatter plot of observed vs. estimated value of four attributes using neural regression: (a) CaCO3; (b) MgCO3; (c) 

Al2O3; (d) Fe2O3. 
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