مدلسازی فیزیکی نشست در خاک ماسهای ناشی از تونلسازی مکانیزه | ||
مهندسی تونل و فضاهای زیرزمینی | ||
مقاله 5، دوره 4، شماره 1، فروردین 1394، صفحه 69-84 اصل مقاله (1.65 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22044/tuse.2015.548 | ||
نویسندگان | ||
امین عبدلی فاضل1؛ مهرداد امامی* 2؛ حسن افشین1 | ||
1دانشکده مهندسی عمران / دانشگاه صنعتی سهند تبریز | ||
2مدیر گروه ژئوتکنیک دانشکده مهندسی عمران/ دانشگاه صنعتی سهند تبریز | ||
چکیده | ||
پیشبینی نشستهای ناشی از حفر تونل در زمینهای نرم از اهمیت بسزایی برخوردار است تا بتوان در صورت لزوم، اقدامات پیشگیرانه لازم را به منظور جلوگیری از آسیب دیدن سازههای سطحی موجود انجام داد. با توجه به رفتار پیچیده خاک، به خصوص خاکهای دانهای، روشهای تجربی در پیشبینی این نشستها از جایگاه ویژهای برخوردار هستند. بدین منظور در این مقاله، ضمن معرفی مدل فیزیکی ساخته شده در دانشکده مهندسی عمران دانشگاه صنعتی سهند تبریز از نتایج به دست آمده از این مدلسازی فیزیکی استفاده شده و جابجاییهای نمونه ماسه در دو تراکم نسبی متفاوت با استفاده از روش پردازش تصویر اندازهگیری شده و منحنیهای نشست سطحی و زیرسطحی با رابطه تجربی مقایسه شده است. | ||
کلیدواژهها | ||
نشست؛ تونل سازی مکانیزه؛ مدل سازی فیزیکی؛ ماسه؛ تراکم نسبی؛ پردازش تصاویر | ||
مراجع | ||
[1] Guglielmetti, V., Grasso, P., Mahtab, A. & Xu, Sh. (2008). Mechanized Tunnelling in Urban Areas. London: Taylor & Francis Group. ISBN-13: 978-0-415-42010-5. [2] Chapman, D., Metje, N. & Stärk, A. (2010). Introduction to Tunnel Construction. Taylor & Francis e-Library, ISBN-13: 978-0-203-89515-3. [3] Zhou, B., Marshall, A. & Yu, H. (2014). Effect of Relative Density on Settlements above Tunnels in Sands. Tunneling and Underground Construction, 96-105. DOI: 10.1061/9780784413449.010. [4] Wood, A. M. (2002). Tunnelling Management by Design, Taylor & Francis e-Library. ISBN: 0-203-78590-8. [5] Hwang, R., Fan, C. & Yang, G. (1995). Consolidation Settlements due to Tunnelling, Proceedings of South East Asian Symposium on Tunnelling & Underground Space Develpoment, Bangkok,Thailand, 79-86. [6] Franzius, J. N. (2003). Behaviour of Buildings due to Tunnel Induced Subsidence, Ph.D. thesis, Imperial College of Science, University of London. [7] Peck, R. B. (1969). Deep Excavations and Tunneling in Soft Ground. State of the art report. Mexico: Proc. 7th Int. Conf. on Soil Mechanics, 225-290. [8] O'Reilly, M. P. & New, B. M. (1982). Settlements above Tunnels in the United Kingdom Their magnitude and prediction. Brighton: Proceedings of the 3rd International Symposium on Tunnelling, 173-181. [9] Jacobsz, S. W., Standing, J. R., Mair, R. J., Hagiwara, T. & Sugiyama, T. (2004). Centrifuge Modelling of Tunnelling Near Driven Piles. Soils Found. 44, No. 1, 49-56. [10] Celestino, T.B. & Ruiz, A.P.T. (1998). Shape of Settlement Troughs due to Tunneling through Different Types of Soft Ground. Felsbau 16(2), 118-121. [11] Vorster, T.E.B., Klar, A., Soga, K. & Mair, R.J. (2005). Estimating the Effects of Tunneling on Existing Pipelines. Geotechnical & Geoenvironmental Engineering, 131, No. 11, 1399-1410. DOI: 10.1061/(ASCE)1090-0241. [12] Loganathan, N. & Poulos, H. (1998). Analytical Prediction for Tunneling-induced Ground Movements in Clays. Geotechnical and Geoenvironmental Engineering, 124(9), 846-856, DOI: 10.1061/(ASCE)1090-024. [13] Beadle, M. (1998). Settlement induced by Tunnelling in Cohesive-Frictional Soils, M.Sc. thesis, University of Western Ontario London. [14] Loganathan, N. (2011). An Innovative Method for Assessing Tunnelling-induced Risks to Adjacent Structures, New York, Parsons Brinckerhoff Inc. [15] Cording, E. J., & Hansmire, W. H. (1975). Displacements around of Soft Ground Tunnels. Proceedings Fifth Panamerican Congress on Soil Mechanics and Foundation Engineering, (4), 571- 633. [16] Atkinson, J. H. & Potts, D. M. (1977). Subsidence above Shallow Tunnels in Soft Ground, Proceedings, ASCE, 103(4), 307-375. [17] Terzaghi, K. (1936). Stress Distribution in Dry and in Saturated Sand above a Yielding Trap-Door. Proceedings of the International Conference on Soil Mechanics, (1), 307–311, Cambridge, MA. [18] Chevalier, B., Combe, G. & Villard, P. (2007). Experimental and Numerical Studies of Load Transfers and Arching Effect in the Trap-Door Problem, Laboratoire Sols, Solides, Structures - Risques, Grenoble, France. [19] Park, S.H., Adachi, T., Kimura, M. & Kishida, K. (1999). Trap Door Test Using Aluminum Blocks, Proceedings of the 29th Symposium of Rock Mechanics. J.S.C.E., 106–111. [20] Adachi, T., Tamura, T., Kimura, K. & Nishimura, T. (1995). Axial Symmetric Trap Door Tests on Sand and Cohesion Soil. Proceedings of the 30th Japan National Conference on Geotechnical Engineering, 1973–1976 (in Japanese). [21] Adachi, T., Kimura, M. & Kishida, K. (2003). Experimental Study on the Distribution of Earth Pressure and Surface Settlement through Three Dimensional Trapdoor Tests. Tunneling and Underground Space Technology 18 (2), 171–183. [22] Caudron, M., Hor, B., Emeriault, F. & Al Heib, M. (2010). A Large 3D Physical Model: a tool to investigate the consequences of ground movements on the surface structures. EPJ Web of Conferences 6, 22001, 1-8. [23] Champan, D.N., Ahn, S.K., Hunt, D.V.L. & Chan, H.C. (2006). The Use of Model Tests to Investigate the Ground Displacement Associated with Multiple Tunnel Construction in Soil. Tunnels & Tunneling 21 (3), 413. [24] Lee, Y. & Yoo, C., (2006). Behavior of a bored tunnel adjacent to a line of load piles. Tunneling and Underground Space Technology 21 (3), 370. [25] Pokrovsky, G.I. & Fedorov, I.S. (1936). Studies of Soil Pressures and Soil Deformations by means of a Centrifuge. Proceedings of the First International Conference ISSMFE (Harvard), vol. I, 70. [26] Bray, J.W. & Goodman, R.E. (1981). The Theory of Base Friction Models. International Journal of Rock Mechanics and Mining Science and Geomechnics Abstract 18, 453–468. [27] Zelikson, A. (1969). Geotechnical Models using the Hydraulic Gradient Similarity method, Geotechnique, 4, 495–508. [28] Atkinson, J.H., Potts, D.M., Schofield, A.N. (1977). Centrifugal Model Tests on Shallow Tunnels in Sand. Tunnels and Tunnelling, vol: Jan/Feb, 59-64. [29] Mair, R.J. (1979). Centrifugal Modelling of Tunnel Construction in Soft Clay. Ph.D. Thesis. Cambridge University Engineering Department, UK. [30] Kim, S. (2004). Interaction Behaviours between Parallel Tunnels in Soft Ground, Tunneling and underground space technology, Underground space fore sustainable urban development, Proceedings of the 30th ITA-AITES world tunnel congress, Singapore, 22 - 27. [31] Lee, C., Chiang, K. and Kuo, C. (2004). Ground Movement and Tunnel Stability when Tunneling in Sandy Ground, Chinese Institute of Engineers,27(7), 1021-1032, DOI:10.1080/02533839.2004.9670957. [32] Marshall, A. M., Farrell, R., Klar, A. & Mair, R. (2012). Tunnels in sands: The Effect of Size, Depth and Volume Loss on Greenfield Displacements, Geotechnique, 62(5) , 385-399, DOI:10.1680/geot.10.p.047. [33] Meguid, M.A., Saada, O., Nunes, M.A. & Mattar, J. (2008). Physical Modeling of Tunnels in Soft Ground: A review, Tunnelling and Underground Space Technology, 23, 185-198, DOI: 10.1016/j.tust.2007.02.003. [34] White, D. J., Take, W. A. & Bolton, M.D. (2003). Soil Deformation Measurement using Particle Image velocimetry (PIV) and Photogrammetry, Geotechnique, 53(7) 619-631. [35] Lee, K. M., Rowe, R. K. & Lo, K.Y. (1992). Subsidence owing to Tunnelling. I. Estimating the gap parameter, Canadian Geotechnical Journal, 29(6), 929-940. [36] Mair, R. J. & Taylor, R. N. (1997). Bored Tunnelling in The Urban Environment. Proceedings of 14th Int. Conf. on Soil Mecaanics and Founation Engineering, 4, 2353-2385. | ||
آمار تعداد مشاهده مقاله: 9,446 تعداد دریافت فایل اصل مقاله: 2,622 |