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Abstract

A new approach is proposed for the pole placement of non-linear systems using the state feedback and fuzzy
system. We use a new online fuzzy training method in order to identify and obtain a fuzzy model for an
unknown non-linear system using only the system input and output. Then we linearize this identified model
at each sampling time to have an approximate linear time-varying system. In order to stabilize the linear
system obtained, we first choose the desired time-invariant closed-loop matrix, and then a time-varying state
feedback is used. The behavior of the closed-loop non-linear system is regarded as a linear time-invariant
(LTI system. Therefore, the advantage of the proposed method is the global asymptotical exponential
stability of unknown non-linear systems. Due to the high speed convergence of the proposed adaptive fuzzy
training method, the closed-loop system is robust against uncertainty in system parameters. Finally, a
comparison is made with the boundary layer sliding mode control (SMC).

Keywords: Fuzzy ldentification, Pole Placement, Non-linear Control, Switch Reluctance Motor, Sliding

Mode Control.

1. Introduction

Control of non-linear systems is still a challenging
area in the literature of control system theory, and
some efforts have been made to study this subject
[1]. However, most of them can be only applied to
a certain class of non-linear systems. For instance,
feedback linearization is only applicable to a class
of non-linear systems that meet the involutivity
condition and can be transformed to the
companion form [1]. Many other methods have
some limitations. For example, chattering is the
most important problem in the sliding mode
control (SMC) [2]. An intelligent approach such
as the fuzzy systems and neural networks can help
us solve these problems and limitations [3-6].

In addition, many efforts have been made to
extend the linear control schemes to non-linear
systems. On such a method is gain-scheduling
control, which is designed based on a finite
number of linearized models at each operating
point [7,8], also called multiple-model adaptive
control (MMAC) [8]. In [7], a MMAC neural
network method is used to control non-linear
systems. This method is expensive in terms of

training and computation, and moreover, its
stability has not been proved [17]. Another simple
method in linear controller design is pole
placement. When all of the state variables of a
system are completely controllable, the closed-
loop poles of the system can be placed in arbitrary
locations on the phase plane using the state
feedback with appropriate gains [1,9]. Some
efforts have been directed toward computational
methods of finding a feedback gain, and many
numerical algorithms have been proposed [10-13].
In these methods, the minimal numerical
operations are at least proportional to the cube of
the system dimension [13]. To eliminate these
time-consuming computations, neural networks
have been proposed [14-16]. For example, in
[10,15], the Sylvester equation has been solved
using the recurrent neural networks. In all of these
methods, stability of the closed-loop system has
not been proved. In [17], a method for pole
placement of non-linear systems has been
presented based on the recurrent neural network,
and the stability of the closed-loop system has
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been proved. However, the plant model has been
assumed to be known. In [19], a method has been
presented using the Takagi—Sugeno (TS) fuzzy
systems based on the linear matrix inequality
(LMI). Thus this approach cannot be online, i.e.
first of all, LMI should be solved. The proposed
approach in [20] is based upon solution of the
Diophantine equations. However, the stability of
the closed-loop non-linear system has not been
proved. The approach mentioned in [20] is only
for discrete-time dynamic plants. Other methods
have been suggested in [18-20].

In this work, we proposed a method for pole
placement of non-linear systems using the fuzzy
systems, which eliminate the time-consuming
computations of MMAC. We assumed that the
non-linear system model was unknown, and that
the system states were not accessible. Closed-loop
stability was also proved. Since the non-linear
plant model was unknown, we first identified its
model using a fuzzy system, and then this
identified model was linearized at any time to
obtain a linear time-varying system. As shown in
[1,17], the eigenvalues were not the stability
criteria for the linear time-varying systems. Thus
we applied a time-varying state feedback to this
time-varying linear system such that the closed-
loop linear system was time-invariant at any time.
The rest of this paper has been organized into six
sections. The system model and problem
formulation are described in section 2. In section
3, we present the system identification procedure.
In section 4, linearization of the non-linear system
and state feedback are explained. Finally, in
section 5, we discuss the simulation and
comparison results to verify the theoretical
concepts presented in the previous sections. The
conclusion is given in section 6.

2. Problem formulation

The eigenvalues are not the criteria used for the
stability of linear time-varying systems [1,17]. For
example, consider the following matrix:

~1+15c0s2(t)  1-15sin(t)cos(t)

_ 7 1)
—1-15sin(t)cost) —1+1.5sin“(t)

Alt) =

For any t, the eigenvalues are 4 o =-0.25(+ jﬁ) .

However, the linear system x=A(t)x is not
stable. To overcome this problem, we proposed a
new approach, which was depicted in figure 1. We
first chose a fixed closed-loop matrix A, and
then calculated the feedback gain at each
sampling time for the linearized identified model
of non-linear system. Consider the following
single input non-linear system:
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Xi =xi+1:i=1,2,...,n—1
Xn = f(X,u)
y=X

such that y is the measurable system output,

(2)

X =[x1,x2...,xn]T is the inaccessible vector state,
and Y is the input control signal. Note that the
function f(x,u) is unknown. The other form of

this equation is as follows:
X=Ax+Bg(xu)

3)
y:CTx
where:
n
g(x,u) = f(x,u)+Zaixi
i=1
4
and:
[ 1 0 0] [o] [1]
0 . : 0 0
A=| ¢ r o 0 |B=|ic=l (®)
0 0 .. 0 1 0
-8 - ... -8y —a] 1] 10]

Assume that a; is such that A is a Hurwitz
matrix, and that the pair (A,B) is controllable,
and (A,C) is observable.

Nonlinear System >

b 4
D)
Y

Nonlinear
Fuzzy Model

,, i

Calculation of Linearization of the
Feedback Gain Nonlinear Fuzzy Model

4,= \ >

Figure 1. Structure of the proposed approach.

3. System identification

According to the fuzzy theorems, the Gaussian
fuzzy basis functions (GFBF) can approximate
any real continuous function with arbitrary
accuracy. This means that GFBF has a universal
approximation property [4]. Due to the
approximation capability of GFBF, there exists an
ideal weight vector w with arbitrary large enough
dimension m such that the system (3) can be
written as follows:

x=Ax+Bg

g=w' () +,

y=CTx

(6)
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where, g, is an arbitrary small reconstruction

error with bound B,, i.e. [e,]<B,.Moreover,

&
WweR™ is the weight vector estimate of fuzzy

rules, and &(.):R"™! > R™ is the Gaussian
membership function (GMF) vector. Based on (6),
to estimate the non-linear function g(x,u), a

singleton fuzzifier with product inference engine
and a defuzzifier as weight sum of each output
rule is used.

Now, the following estimator could be proposed:

k= A+ BT E(R) + ke (y )+ T(y=9) ()

where, X=[%,%,...,%,]" is the identified model
state vector, and matrix A and observer gain
vector TeR™! are chosen such that
A = A-TC" s stable, i.e. for any symmetric
positive definite matrix Q, there exists a

symmetric positive definite matrix P satisfying
the following Lyapunov equation:

ATP+PA =-Q ®
By subtracting (7) from (6), we obtain:

S AT T

X = AX +Blw' £(X,u) + &y )

B £ U+ (Y- D T-9)
in which X(t) =x(t) — X(t) and W=w—W are the
state and parameter estimation errors.
% = AR+ BlwT E(x,u)—WT £(%,)

—Ky(y=9)+x)=
AT+ Bl Ky (y =)+ &5 —wT £(0)
W ER )~k (Y= 9) + &)=
A5§+B(WT£+WT§—kX(y—9)+gX)
suchthat: & =& —&, E=&(x,u), and £=E(R,u).

Theorem 1: Using the following adaptive weight
law:

W=k & ¥ —4keky, |7 W (12)
the estimation error X(t) converges to zero if
ky > . k, and k. are the arbitrary positive

scalar constants, and y =y —.
Proof: Consider the following Lyapunov function:

(10)

V) =13 T PR+ @ T W
2 2Ky
(12)
Taking the derivative of V (t) yields:

v(t)=%x*TPi+%iTpi+kiWTv"’v (13)

w
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Substituting (8) and (10) in the above equation
follows that:

j loTaw. T Tz
VHt)=—=Xx QX+X PB(w &+
(t) 5 (W' & +é4) (14)

—kXYTCCTY+WT(1VT/+$BTPYJ

Ky

Using the equality W:—W, and tuning law (11)
in the above equation leads to:

\/'(t):—%zTQmiT PB(W' £ +&y) (15)

—KkyXTCCTX +4kg| VW W
Now consider the logical assumptions that the
actual weight w is norm bounded, and, moreover,
the activation functions & and & in (7) are chosen
such that their norm be bounded also (see (32))
ie. [w|<B, and |£]<Bgor Hf”s B, . Therefore,

we can write: ‘WTE+8‘SZBWB§+BE. Here,
considering the properties of the positive definite
matrices Q and P, and using w=w-w, the
above equation yields:

V(®) <-(050(Q) +ky IR

+0(PB)(2B,,B; + B, || (16)

X W
Now, we define By as follows:
o(PB)(2B,Bg +B,) +k.BaC|
0.50(Q) +ky
o(PB)(2ByBg: +B,) +keBy
0.50(Q) +ky

X

(17)

where, o and o denote the maximum and
minimum singular values, respectively. Therefore:

V (1) <—(050(Q) + ky ) (K]~ B3 )X

2
ke [#]- 38, ] 13
or.
V(1)< ~(050(Q) + ky )(|X] -Bz )]

Take:  a(t) =(050(Q) + ky )(|X| -Bx X[, and

(19)

suppose:  [X|>B;. Then one can write:
V <-w(t)<0, and from (12), one can write
V(t)>V(0). Therefore, X, &, and W are

bounded when [X|>Bg . Moreover, it is easy to
show that V' is bounded when ||| >Bg because it

is clear that V is also dependent on X , E and
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W i.e. V(t) is uniformly continuous. Integration
of V < —w(t) <0from zero to t yields:

0sjtw(r)drsjta)(r)dr+V(t)sV(0) 20)
0 0
when t — oo, the above integral exists, and is less
than or equal to V (0). Since V (0) is positive and
finite, according to the Barbalat’s lemma [1], we
have:

lim (t) = im (050(Q) +ky ) (%]~

>

Since (0.50(Q) +k, ) is greater than zero, (21)
implies decreasing |X| until it reaches By, whose

B JRl=0 @1

resultis lim x| =Bg.
t—o0
This guarantees that B; is the lower bound of |X|
,and it is clear that lim By =0. Then |X| or X
k, —>o0

X

will converge to zero if ky — co.The result of this

theorem can be written as:
lim Xx=0

Kk, —0

t—oo

(22)

4. State feedback
According to (7) and due to the convergence of
fuzzy system based on (22), we have:

= AR+ BW' £(%,u) (23)
Usmg (4) and (23), we can write:
Rn =W E(RU) - D 8, (24)

Then an approximate instantaneous linear model

is as follows [17]:

n A

in=Z[WTW—aijx,+[ ar e )ju +HOT (29)
e} K au

where, H.OT is the higher order terms in the
Taylor series, which can be considered as the
perturbation, and can be neglected [1,17]. Note
that this linear system is not time-invariant
because the gain vector w varies with time, and as
we aforementioned, the eigenvalues are not the
criteria for stability.

Then we should apply a state feedback such that
the closed system is linear time-invariant (LTI).
To this end, we used the following state feedback:

u(t) =k@®X) +r(t)= Zn:ki (0% () +r()
i=1
k(1) =[ka (1) k2 (0),... kn ()]

where, r(t) is the new input control signal. Then:

(26)
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[ W 5§(X u) a_JAI +(\;\,T %)[;k, ®% (t)+r(t)}=

:H

(Tacf(x u) ATaﬁ(XU)k(t)J (Tag’(xu)j ©
(27)
We choose:
v w7 OERU)) /(T DE(RU) 28
kit)= (W R; J/(W ou ) (28)
Then:
=D+ ( it e “)] ® (29)
i=1
or:
R=AR+Gr (30)
where, A is as (5), and:
o AT
G:{O 0 0 WT%(X'”)} eR" (31)
au

5. Simulation and comparison results
In the following examples, the proposed method is
applied to a non-linear non-affine system to show
the effectiveness of this approach. Consider the
following one-phase model of switch reluctance
motor (SRM) [21].
Xl =Xy

_ NPy dhix)

Ih?(x) 04

h(x) = La +Lysin(xq)

where, X, is the electrical angular position, X, is
the mechanical angular velocity, u is the stator
current (input control signal), T is the load
torque, 4 is the flux linkage, J is the total rotor
and load inertia, N is the number of rotor poles,
and L,and L, are the values for inductance at

the aligned and un-aligned positions, respectively.
In this work, the SRM parameters werechosen as:

Ny =4, 3 =0.07 Kg.m?, yg =0.1Wb, L, =180mH
, Ly,=8mH,and T=05N.M.

The simulations were performed using MATLAB,
with a sample time of 0.001. For the fuzzy system,
we chose a GMF vector with three inputs

(X, X,,u) and eleven rules as follow:

§i(>21,)”(2,u)=exp[—(\lx12+x§+u - (6 I)j /] (33)

i=12,...
g , and the fuzzy network tuning parameters were

(32)

—[l+uh(eg)]eun0) }—%

where, J11. The output of defuzzifier is
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chosen as k,, =5, k, =100 and ks =30. The
other parameters were chosen as:

5 el

The initial conditions for the weight vector were
chosen as w(O):[O,O,...,O]T, and, moreover,

x(0) =[%1(0), (0] =[24]", and r(t) is as a
pulse function shown in figure 2. Figures 3 till 13
show the simulation results. We can see that the
behavior of the closed-loop systems is as a linear
system. Figures 3, 4 and 5 show the non-linear
model of f(x,u) and its fuzzy estimation. From

figure 5, we can see the accuracy and precision of
the proposed adaptive fuzzy system in estimation
of the non-linear systems. Figures 6, 7 and 8
shows the input control signal of SRM and as we
can see, its initial value is not large and has no
oscillation. Figures 9 and 10 show the system
states and their estimation. Finally, figures 11 and
12 demonstrate the behavior of the fuzzy systems.
In these figures, the adaptive weight vectors are
shown, i.e. the outputs of (11). In figure 13, the
outputs of fuzzy membership are shown, i.e. the
outputs of (33).

(34)

o 1
o
2
2
£
80
T 5 10 15 20
time(second)
Figure 2. Reference input.
f and f-hat

20
8
3 0
S5
8§ -20
59 =
< o — f
O o _,
g & -40 == fh

% 5 10 15 20

time(second)
Figure 3. Non-linear system and its fuzzy estimation.

f-fhat

20

(@)

N
(=}

mechanical angular
acceleration

-400 5

15 20

10
time(second)

Figure 4. Difference between non-linear system and its
fuzzy estimation.
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f-fhat
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Figure 5. Difference between non-linear system and its
fuzzy estimation.
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Figure 6. Input control signal of non-linear system.
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Figure 7. Input control signal of non-linear system.
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Figure 8. Input control signal of non-linear system.

x1 and x1-hat
2
— ]
§ ==y h
> 1
@©
gs
32 0
% = \/\\/_\—/
T 10 15 20
time(second)
Figure 9. First state and its estimation.
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Figure 10. Second state and its estimation.
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Outputs of adaptive weights in fuzzy system: w

10

(o)
(3}
=}
2
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£
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time(second)
Figure 11. Adaptive weight of fuzzy system.
Outputs of adaptive weights in fuzzy system: w
0 T

-0.2
()

5 0.4
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\/ \4 \/
T 5 10 15 20
time(second)

Figure 12. Adaptive weight of fuzzy system.

Outputs of Gaussian membership functions (GMF)

amplitude

0
time(second)

Figure 13. Output of Gaussian membership functions.

In order to compare the proposed method with the
boundary layer sliding mode control (SMC), the
following estimation of the sliding surface was
defined:

n
§= A%, An =1 (35)
i=1

The coefficients 4; :i=12,...,n should be chosen
so that the following polynomial is Hurwitz:
P44 P2+ P+ +L,P+1,=0 (36)
The input control signal can be calculated using
the following reaching law [1,2]:

§=—ksat(3/ ) (37)
whose result is:

u :[WT mj ' —ksat(ﬁlgo)—nzl/lixi
ou i (38)
S 260
i=1 Xi
For the stability of the closed-loop system, the
inequality k>|H.OT| should be satisfied [1,2,22].
However, the problem is that the terms H.O.T are

unknown. To solve this problem, a large k should
be chosen, which leads to chattering [2,22].

For SRM, (38) leads to:

" -1
e [WT ag((;:u)j (- ksat(s/g) - Ay — %

_[WT 86;::“) _alj)zl —[WT 86(5{!“) —32}22

1 R

(39)

We chose the parameters as 4 =2,k =5,90=0.1.
Figures 14 to 20 show the simulation results.
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|

|
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Figure 14. Non-linear system and its fuzzy estimation.
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Figure 15. Difference between non-linear system and its
fuzzy estimation.

o

stator current

&
S

| |
| |
| |
| |
' L

|
|
- i
1000 5 10 15 20
time(second)

Figure 16. Input control signal of non-linear system.
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Figure 17. First state and its estimation.

x2 and x2-hat

mechanical angular
velocity
N
Mo

0 20 5 10 15 20
-3 — 2
4 - x2h
o) 10 15 20

time(second)

Figure 18. Second state and its estimation.
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Norm of adaptive weight in fuzzy system: w
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Figure 19. Norm of adaptive weights of fuzzy system.
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Figure 20. Norm of output of Gaussian membership
functions.

We can see the effect of chattering in SMC, while
the results in the state feedback are smooth.
Another SMC drawback is its large value of input
control signal, while the input control signal in
state feedback is small and without chattering
(compare Figures 6 and 16). We know that the
convergence in both SMC and state feedback is
asymptotical [1]. From figures 9, 10 and 17, 18,
we can see that the only advantage of SMC is its
faster convergence. In this example, the
convergence time in SMC is about 2 seconds but
in state feedback, it is about 4 seconds.

6. Conclusion

In this work, a new approach was proposed for the
state feedback of unknown non-linear systems,
which could lead to global asymptotical
exponential stability. To have the unknown plant
model, a fuzzy system was used, and an online
adaptive training method was proposed using only
the output system. In comparison with the existing
approach, we first chose the closed-loop matrix,
and then calculated the state feedback. Then the
behavior of the closed-loop non-linear system is
as a linear time invariant (LTI) system. Another
advantage of the proposed method is its
robustness against uncertainty in  system
parameters because the gain vector is computed
online, and any drift and perturbation in
parameters of the system affect this gain directly.
This approach is simple in concept and
realization. Finally, the proposed state feedback
was compared with the boundary layer sliding
mode control.
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