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Abstract 

A new approach is proposed for the pole placement of non-linear systems using the state feedback and fuzzy 

system. We use a new online fuzzy training method in order to identify and obtain a fuzzy model for an 

unknown non-linear system using only the system input and output. Then we linearize this identified model 

at each sampling time to have an approximate linear time-varying system. In order to stabilize the linear 

system obtained, we first choose the desired time-invariant closed-loop matrix, and then a time-varying state 

feedback is used. The behavior of the closed-loop non-linear system is regarded as a linear time-invariant 

(LTI) system. Therefore, the advantage of the proposed method is the global asymptotical exponential 

stability of unknown non-linear systems. Due to the high speed convergence of the proposed adaptive fuzzy 

training method, the closed-loop system is robust against uncertainty in system parameters. Finally, a 

comparison is made with the boundary layer sliding mode control (SMC). 

 

Keywords: Fuzzy Identification, Pole Placement, Non-linear Control, Switch Reluctance Motor, Sliding 

Mode Control. 

1. Introduction 

Control of non-linear systems is still a challenging 

area in the literature of control system theory, and 

some efforts have been made to study this subject 

[1]. However, most of them can be only applied to 

a certain class of non-linear systems. For instance, 

feedback linearization is only applicable to a class 

of non-linear systems that meet the involutivity 

condition and can be transformed to the 

companion form [1]. Many other methods have 

some limitations. For example, chattering is the 

most important problem in the sliding mode 

control (SMC) [2]. An intelligent approach such 

as the fuzzy systems and neural networks can help 

us solve these problems and limitations [3-6]. 

In addition, many efforts have been made to 

extend the linear control schemes to non-linear 

systems. On such a method is gain-scheduling 

control, which is designed based on a finite 

number of linearized models at each operating 

point [7,8], also called multiple-model adaptive 

control (MMAC) [8]. In [7], a MMAC neural 

network method is used to control non-linear 

systems. This method is expensive in terms of 

training and computation, and moreover, its 

stability has not been proved [17]. Another simple 

method in linear controller design is pole 

placement. When all of the state variables of a 

system are completely controllable, the closed-

loop poles of the system can be placed in arbitrary 

locations on the phase plane using the state 

feedback with appropriate gains [1,9]. Some 

efforts have been directed toward computational 

methods of finding a feedback gain, and many 

numerical algorithms have been proposed [10-13]. 

In these methods, the minimal numerical 

operations are at least proportional to the cube of 

the system dimension [13]. To eliminate these 

time-consuming computations, neural networks 

have been proposed [14-16]. For example, in 

[10,15], the Sylvester equation has been solved 

using the recurrent neural networks. In all of these 

methods, stability of the closed-loop system has 

not been proved. In [17], a method for pole 

placement of non-linear systems has been 

presented based on the recurrent neural network, 

and the stability of the closed-loop system has 
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been proved. However, the plant model has been 

assumed to be known. In [19], a method has been 

presented using the Takagi–Sugeno (TS) fuzzy 

systems based on the linear matrix inequality 

(LMI). Thus this approach cannot be online, i.e. 

first of all, LMI should be solved. The proposed 

approach in [20] is based upon solution of the 

Diophantine equations. However, the stability of 

the closed-loop non-linear system has not been 

proved. The approach mentioned in [20] is only 

for discrete-time dynamic plants. Other methods 

have been suggested in [18-20]. 

In this work, we proposed a method for pole 

placement of non-linear systems using the fuzzy 

systems, which eliminate the time-consuming 

computations of MMAC. We assumed that the 

non-linear system model was unknown, and that 

the system states were not accessible. Closed-loop 

stability was also proved. Since the non-linear 

plant model was unknown, we first identified its 

model using a fuzzy system, and then this 

identified model was linearized at any time to 

obtain a linear time-varying system. As shown in 

[1,17], the eigenvalues were not the stability 

criteria for the linear time-varying systems. Thus 

we applied a time-varying state feedback to this 

time-varying linear system such that the closed-

loop linear system was time-invariant at any time. 

The rest of this paper has been organized into six 

sections. The system model and problem 

formulation are described in section 2. In section 

3, we present the system identification procedure. 

In section 4, linearization of the non-linear system 

and state feedback are explained. Finally, in 

section 5, we discuss the simulation and 

comparison results to verify the theoretical 

concepts presented in the previous sections. The 

conclusion is given in section 6. 

 

2. Problem formulation 

The eigenvalues are not the criteria used for the 

stability of linear time-varying systems [1,17]. For 

example, consider the following matrix: 
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For any t , the eigenvalues are )71(25.02,1 j . 

However, the linear system xtAx )(  is not 

stable. To overcome this problem, we proposed a 

new approach, which was depicted in figure 1. We 

first chose a fixed closed-loop matrix clA , and 

then calculated the feedback gain at each 

sampling time for the linearized identified model 

of non-linear system. Consider the following 

single input non-linear system: 
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such that y  is the measurable system output, 

T
nxxxx ],,[ 21  is the inaccessible vector state, 

and u  is the input control signal. Note that the 

function ),( uxf  is unknown. The other form of 

this equation is as follows: 
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Assume that ia  is such that A  is a Hurwitz 

matrix, and that the pair ),( BA  is controllable, 

and ),( CA  is observable. 

 

 
Figure 1. Structure of the proposed approach. 

 

3. System identification 

According to the fuzzy theorems, the Gaussian 

fuzzy basis functions (GFBF) can approximate 

any real continuous function with arbitrary 

accuracy. This means that GFBF has a universal 

approximation property [4]. Due to the 

approximation capability of GFBF, there exists an 

ideal weight vector w  with arbitrary large enough 

dimension m  such that the system (3) can be 

written as follows: 
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where, x  is an arbitrary small reconstruction 

error with bound B , i.e.  Bx  .Moreover, 

mRwˆ  is the weight vector estimate of fuzzy 

rules, and mn RR 1:(.)  is the Gaussian 

membership function (GMF) vector. Based on (6), 

to estimate the non-linear function ),( uxg , a 

singleton fuzzifier with product inference engine 

and a defuzzifier as weight sum of each output 

rule is used. 

Now, the following estimator could be proposed: 

  )ˆ()ˆ(),ˆ(ˆˆˆ yyTyykuxwBxAx x
T     (7) 

 

where, T
nxxxx ]ˆ,ˆ,ˆ[ˆ 21  is the identified model 

state vector, and matrix A  and observer gain 

vector 
1 nRT  are chosen such that 

T
s TCAA   is stable, i.e. for any symmetric 

positive definite matrix Q , there exists a 

symmetric positive definite matrix P  satisfying 

the following Lyapunov equation: 

QPAPA s
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By subtracting (7) from (6), we obtain: 
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in which )(ˆ)()(~ txtxtx   and www ˆ~   are the 

state and parameter estimation errors. 
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such that:  ˆ~
 , ),( ux  , and ),ˆ(ˆ ux  . 

Theorem 1: Using the following adaptive weight 

law: 

wykkykw wew ˆ~4~ˆˆ                                  (11) 

the estimation error )(~ tx  converges to zero if 

xk . wk
 
and ek  are the arbitrary positive 

scalar constants, and yyy ˆ~  . 

Proof: Consider the following Lyapunov function: 

ww
k

xPxtV T

w

T ~~

2

1~~

2

1
)(                            

(12) 

Taking the derivative of )(tV  yields: 
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Substituting (8) and (10) in the above equation 

follows that: 
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Using the equality ww  ˆ~  , and tuning law (11) 

in the above equation leads to: 
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Now consider the logical assumptions that the 

actual weight w  is norm bounded, and, moreover, 

the activation functions   
and ̂  in (7) are chosen 

such that their norm be bounded also (see (32)) 

i.e. wBw   and  B or  Bˆ . Therefore, 

we can write:  BBBw w
T  2

~
. Here, 

considering the properties of the positive definite 

matrices Q  and P , and using www ~ˆ  , the 

above equation yields: 
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Now, we define xB~  as follows: 
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where,   and   denote the maximum and 

minimum singular values, respectively. Therefore: 
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or: 

   xBxkQtV xx
~~)(5.0)( ~                   (19) 

 

Take:    xBxkQt xx
~~)(5.0)( ~  , and 

suppose: xBx ~
~  . Then one can write:

0)(  tV  , and from (12), one can write 

)0()( VtV  . Therefore, x~ , 
~

, and w~ are 

bounded when xBx ~~  . Moreover, it is easy to 

show that V  is bounded when xBx ~~ 
 
because it 

is clear that V  is also dependent on x~ , 
~

 
and 
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w~  i.e. )(tV  is uniformly continuous. Integration 

of 0)(  tV  from zero to t  yields: 

)0()()()(0
00

VtVdd
tt

               (20) 

 

when t , the above integral exists, and is less 

than or equal to )0(V . Since )0(V  is positive and 

finite, according to the Barbalat’s lemma [1], we 

have: 
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Since  xkQ )(5.0   is greater than zero, (21) 
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result is x
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theorem can be written as: 
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4. State feedback 

According to (7) and due to the convergence of 

fuzzy system based on (22), we have: 

),ˆ(ˆˆˆ uxwBxAx T                                        (23) 

Using (4) and (23), we can write: 
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Then an approximate instantaneous linear model 

is as follows [17]: 
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where, TOH ..  is the higher order terms in the 

Taylor series, which can be considered as the 

perturbation, and can be neglected [1,17]. Note 

that this linear system is not time-invariant 

because the gain vector w  varies with time, and as 

we aforementioned, the eigenvalues are not the 

criteria for stability.  

Then we should apply a state feedback such that 

the closed system is linear time-invariant (LTI). 

To this end, we used the following state feedback: 
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where, )(tr  
is the new input control signal. Then: 
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We choose: 
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or: 

rGxAx  ˆ̂                                                     (30) 

where, A  is as (5), and: 
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5. Simulation and comparison results 

In the following examples, the proposed method is 

applied to a non-linear non-affine system to show 

the effectiveness of this approach. Consider the 

following one-phase model of switch reluctance 

motor (SRM) [21]. 
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where, 1x  is the electrical angular position, 2x is 

the mechanical angular velocity, u  is the stator 

current (input control signal), T  is the load 

torque, s  is the flux linkage, J  is the total rotor 

and load inertia, rN  is the number of rotor poles, 

and uL and uL  are the values for inductance at 

the aligned and un-aligned positions, respectively. 

In this work, the SRM parameters werechosen as: 

mHLWbmKgJN asr 180,1.0,.07.0,4 2  

, mHLu 8 , and MNT .5.0 . 

The simulations were performed using MATLAB, 

with a sample time of 0.001. For the fuzzy system, 

we chose a GMF vector with three inputs 

),ˆ,ˆ( 21 uxx  and eleven rules as follow: 
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where, 11,,2,1 i . The output of defuzzifier is 

ĝ , and the fuzzy network tuning parameters were 
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chosen as 5wk , 100xk  and 30ek . The 

other parameters were chosen as: 






















1

1
,

89

10
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The initial conditions for the weight vector were 

chosen as  Tw 0,,0,0)0(  , and, moreover, 

TTxxx ]1,2[)]0(),0([)0( 21  , and )(tr  is as a 

pulse function shown in figure 2. Figures 3 till 13 

show the simulation results. We can see that the 

behavior of the closed-loop systems is as a linear 

system. Figures 3, 4 and 5 show the non-linear 

model of ),( uxf  and its fuzzy estimation. From 

figure 5, we can see the accuracy and precision of 

the proposed adaptive fuzzy system in estimation 

of the non-linear systems. Figures 6, 7 and 8 

shows the input control signal of SRM and as we 

can see, its initial value is not large and has no 

oscillation. Figures 9 and 10 show the system 

states and their estimation. Finally, figures 11 and 

12 demonstrate the behavior of the fuzzy systems. 

In these figures, the adaptive weight vectors are 

shown, i.e. the outputs of (11). In figure 13, the 

outputs of fuzzy membership are shown, i.e. the 

outputs of (33). 
 

 
Figure 2. Reference input. 

 
Figure 3. Non-linear system and its fuzzy estimation. 

 
Figure 4. Difference between non-linear system and its 

fuzzy estimation. 

 
Figure 5. Difference between non-linear system and its 

fuzzy estimation. 

 
Figure 6. Input control signal of non-linear system. 

 
Figure 7. Input control signal of non-linear system. 

 
Figure 8. Input control signal of non-linear system. 

 
Figure 9. First state and its estimation. 

 
Figure 10. Second state and its estimation. 
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Figure 11. Adaptive weight of fuzzy system. 

 

 
Figure 12. Adaptive weight of fuzzy system. 

 
Figure 13. Output of Gaussian membership functions. 

 

In order to compare the proposed method with the 

boundary layer sliding mode control (SMC), the 

following estimation of the sliding surface was 

defined: 
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so that the following polynomial is Hurwitz: 
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The input control signal can be calculated using 

the following reaching law [1,2]: 
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whose result is: 
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For the stability of the closed-loop system, the 

inequality TOHk ..  should be satisfied [1,2,22]. 

However, the problem is that the terms TOH ..  are 

unknown. To solve this problem, a large k  should 

be chosen, which leads to chattering [2,22]. 

For SRM, (38) leads to: 
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We chose the parameters as 1.0,5,21   k . 

Figures 14 to 20 show the simulation results. 

 

 
Figure 14. Non-linear system and its fuzzy estimation. 

 
Figure 15. Difference between non-linear system and its 

fuzzy estimation. 

 
Figure 16. Input control signal of non-linear system. 

 
Figure 17. First state and its estimation. 

 
Figure 18. Second state and its estimation. 
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Figure 19. Norm of adaptive weights of fuzzy system. 

 

 
Figure 20. Norm of output of Gaussian membership 

functions. 

 

We can see the effect of chattering in SMC, while 

the results in the state feedback are smooth. 

Another SMC drawback is its large value of input 

control signal, while the input control signal in 

state feedback is small and without chattering 

(compare Figures 6 and 16). We know that the 

convergence in both SMC and state feedback is 

asymptotical [1]. From figures 9, 10 and 17, 18, 

we can see that the only advantage of SMC is its 

faster convergence. In this example, the 

convergence time in SMC is about 2 seconds but 

in state feedback, it is about 4 seconds. 

 

6. Conclusion 

In this work, a new approach was proposed for the 

state feedback of unknown non-linear systems, 

which could lead to global asymptotical 

exponential stability. To have the unknown plant 

model, a fuzzy system was used, and an online 

adaptive training method was proposed using only 

the output system. In comparison with the existing 

approach, we first chose the closed-loop matrix, 

and then calculated the state feedback. Then the 

behavior of the closed-loop non-linear system is 

as a linear time invariant (LTI) system. Another 

advantage of the proposed method is its 

robustness against uncertainty in system 

parameters because the gain vector is computed 

online, and any drift and perturbation in 

parameters of the system affect this gain directly. 

This approach is simple in concept and 

realization. Finally, the proposed state feedback 

was compared with the boundary layer sliding 

mode control. 
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 های غیرخطیجایابی قطب تطبیقی فازی برای پایدارسازی سیستم

 

 علی کرمی ملائی

 شاهرود، شاهرود، ایرانصنعتی و رباتیک، دانشگاه دانشکده برق 
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 چکیده:

، از اینن روش. در شودپیشنهاد میهای فازی های غیرخطی با استفاده از فیدبک حالت و سیستمروشی جدید برای جایابی قطب در سیستم در این مقاله،

 رویکردی نو برای آموزش روی خط سیستم فازی به منظور شناسایی و بدست آوردن مدل نامشخص سیسنتم غیرخطنی اسنتفاده شنده اسنت. در روش

 ،شود. سپس مدل شناسایی شده را در هر زمان نموننه بنرداریرودی و خروجی سیستم برای تخمین مدل فازی سیستم استفاده میفقط از و پیشنهادی،

با زمنان خطی نموده تا یک مدل تقریبی خطی متغیر با زمان بدست آوریم. برای پایدار سازی سیستم خطی بدست آمده، ابتدا ماتریس مورد نظر نامتغیر 

یسنتم خطنی کنیم. بنابراین رفتار سیستم حلقه بسنته، ماننند ینک سحلقه بسته را انتخاب نموده و سپس بهره فیدبک حالت متغیر با زمان را تعیین می

نامتغیر با زمان خواهد بود. از مزایای روش پیشنهادی، پایداری نمایی مجنانبی سراسنری سیسنتم نامشنخص غیرخطنی اسنت. بنه دلینا سنر ت بنا ی 

هنای موجنود در پارامترهنای سیسنتم، مقناو. اسنت. در نهاینت روش همگرایی آموزش تطبیقی سیستم فازی، سیستم حلقه بسته نسنبت بنه ننامعینی

 هادی با کنترل حالت لغزشی  یه مرزی مقایسه شده است.پیشن

 شناسایی فازی، جایابی قطب، کنترل غیرخطی، موتور مقاومت متغیر،کنترل حالت لغزشی. :کلمات کلیدی

 


