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Abstract 

This paper presents an application of the design of experiment(DoE) techniques to determine the optimized 

parameters of the artificial neural network (ANN)model, which are used to estimate the force from the 

electromyogram (sEMG) signals. The accuracy of the ANN model is highly dependent on the network 

parameter settings. There are plenty of algorithms that are used to obtain the optimal ANN settings. 

However, to the best of our knowledge, no regression analysis has yet been used to model the effect of each 

parameter as well as presenting the percent contribution and significance level of the ANN parameters for 

force estimation. In this paper, the sEMG experimental data is collected, and the ANN parameters are 

regulated based on an orthogonal array design table to train the ANN model. The Taguchi method helps us to 

find the optimal parameters settings. The analysis of variance (ANOVA) technique is then used to obtain the 

significance level as well as the contribution percentage of each parameter I order to optimize ANN’ 

modeling in the human force estimation. The results obtained indicate that DoE is a promising solution to 

estimate the human force from the sEMG signals. 
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1. Introduction 

The rehabilitation robot has recently received 

much attention by the physiotherapists and robot 

researchers. There are some reasons for this 

increasing attention. The rehabilitation robot can 

consistently apply therapy over long time periods 

without tiring. In addition, the use of sensors can 

highly improve the quality of therapy. Moreover, 

it can provide some types of therapy exercises that 

a therapist cannot do. Furthermore, the robot can 

decrease the cost of a physiotherapy process. 

There is also a great need from many patients with 

movement disabilities to have session 

physiotherapy. Finally, the rehabilitation robot 

can be easily programmed by a physiotherapist to 

perform the suggested exercises [1]. Muscle 

activity can be recorded from selected muscles 

using surface EMG electrodes (sEMG), while the 

user moves his arm. The muscular activity can be 

transformed to the force and kinematic variables 

that are used as the inputs in the robot control by a 

decoding procedure. 

The sEMG signals are one of the most common 

biological signals thaht help us in the robot 

control according to the user’s intention. The 

sEMG signals can directly reflect the muscle 

activation level in real time [2-8]. In voluntary 

movements, force is associated with the motor 

unit recruitment and variations in the motor unit 

firing frequency [9]. At the same muscle length 

and under the isometric conditions, a greater 

number of recruited motor units with greater 

discharge frequencies (i.e. muscle activation) lead 

to a greater force generation. Therefore, a linear 

relationship between EMG and muscle force is 

assumed. Although, Precise estimation of muscle 

force based on the sEMG signals in real time 

provides valuable information for a robot control 

system in order to perform effective therapeutic 

exercises, while the sEMG signals are random, 

continuous, and non-linear in nature [10, 11]. 

Therefore, the sEMG signals should be processed 

in order to get a simple model for its amplitude 

and then map this amplitude for joint force. 

Various methods have been proposed for the 

sEMG-based force estimation such as 

mathematical models, artificial neural network 

(ANN), and neurofuzzy. It has been shown that 

ANN will yield efficient to estimate the voluntary  
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limb force [12]. It has been shown that the setting 

of network parameters, such as the number of 

neurons, number of hidden layers, and learning 

rate have great influences on the accuracy of ANN 

model. However, selection of the ANN design 

parameters is still an open question in the force 

estimation for the rehabilitation robots. Design of 

experiment (DoE), as a statistical technique, is 

widely used to study the relationship between the 

factors involved, and affecting the outputs of the 

process. Additionally, it can be used to 

systematically identify the optimum setting of 

factors to reach the desired output. In this paper, 

we used DoE to find the best setting of the ANN 

parameters in order to achieve a minimum error in 

force estimation. The applications of DoE 

techniques to optimize the ANN parameters have 

been reported in the literature [13-18]. It has been 

found that some factors such as the number of 

neurons in the hidden layers, transfer function, 

and training function have significant effects on 

the ANN performance. Therefore, in this paper, 

the sEMG experimental data was collected, and 

the ANN parameters were regulated based on an 

orthogonal array design table to train the ANN 

model.  The Taguchi method helps us to find the 

optimal parameter settings. The analysis of the 

variance (ANOVA) technique is then used to 

obtain the significance level as well as the 

contribution percentage of each parameter to 

optimize the ANN modeling in the human force 

estimation. The results of human force estimation 

have indicated that DoE is a promising solution to 

optimize the ANN modeling. This paper is 

organized as followss: Section 2 explain how 

ANN is used for the sEMG-based force 

estimation. The Taguchi method is introduced in 

section 3. In section 4, the experimentation 

procedure is presented. The results obtained and 

the concluding discussion are presented in 

sections 5 and 6.    

 

2. Force estimation 

In the control system of the rehabilitation robots, 

the estimated force is used as an input signal. 

Nevertheless, the raw sEMG signals are not 

suitable as input signals for controllers, and must 

be processed prior to use. In this paper, each EMG 

channel is independently processed in three steps, 

as follows. Step 1: The raw EMG signals must be 

filtered. In this step, a a 5
th
 ordered notch filter is 

used to remove the 60 Hz noise resulting from the 

power supply. Step 2: The EMG signal should be 

rectified. The absolute value for the EMG signals 

is calculated in this step. Step 3: The online 

moving average (OMA) of the rectified EMG 

signals is calculated as follows: 
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   (1) 

where, N  is the number of segments ( 100N  ) 

and ( )E t  is the value of the rectified EMG at its 

sampling point. The signal processing procedure 

is shown in figure 1. Finally, the processed EMG 

(PEMG) signals are ready to be used as an input 

for the ANN estimator.  

 

Figure 1. EMG process for neural network estimation. 

MLP and cascade are the two most common ANN 

structure that are used for force estimation. The 

detailed structural design for te feed-forward 

condition for MLP and Cascade is depicted in 

figure 2.  

 

Figure 2. Cascade (up) and MLP (down) neural network 

structure. 
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We proposed the PEMG signals and the of human 

dynamics information as the inputs for estimation. 

Hence, the relationship between the sEMG signals 

and the human force can been proposed as: 
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where,      
 is the estimation of human force, 

          is the processed EMG signal for the i
th
  

channel, and θ and  ̇ are the angular position and 

velocity, respectively.     
    and     

    are the 

neural network weight matrices of the hidden 

layers, and     
   is the weight matrix of the 

output layer. 

Selection of the ANN design parameters is still an 

open challenge. For example, the network 

performance may deteriorate by a large number of 

hidden neurons. In addition, to store the huge 

numbers of network variables, a huge memory is 

required, and hence, training becomes 

complicated. However, the network cannot adjust 

the weight and bias properly during training, if a 

very low number of neurons are selected in the 

hidden layer, which result in over-fitting. Over-

fitting makes the network excessively complex, 

and thus, the non-generalized network generates 

random error, and provides a very poor 

classification. Figure3 depicts the design 

parameters of ANN that largely affect the ANN 

performance.  

Figure 3. Design parameters of ANN. 

Due to the lack of a specific rule for finding the 

optimal ANN parameters for an optimized 

network performance, a statistical technique is 

performed to investigate the appropriate network 

topology for force estimation. 

 

3. Taguchi Method 

In the Taguchi method, constructed on the 

fractional factorial experiment, the independent 

parameters are divided into design parameters and 

noise parameters [19]. The design parameters are 

those for which the designer chooses values as a 

part of the design process and the noise 

parameters are defined for modelling uncertainty 

in the design. 

In the design process, we choose the design 

parameter values such that the design goals are 

maximized despite the noise parameter actions. 

This means that a robust tuning technique using 

the Taguchi method would enable the regulators 

not only to reduce the control errors but also to 

decrease variations in those values while 

remaining insensitive to changes in system 

dynamics and variations in operating points.  

By implementing this approach, the researchers 

can significantly decrease the time required for 

experimental investigations. DoE using the 

Taguchi method is briefly outlined below [20]: 

A. Identification of objectives: the first step of 

the Taguchi method is to identify a specific 

objective. In this paper, the objective is the 

ANN parameters, which are used to minimize 

the estimation error.  

B. Determining the quality characteristic: in 

Taguchi method, the quality characteristics are 

classified into one of the following three types: 

nominal-the-best, smaller-the-better, and 

larger-the-better. In this study, the smaller-the-

better type is used to decrease the estimation 

error.  

C. Selecting the controllable factors and noise 

factors: one of the most important steps 

involved is the selection of the factors to be 

tested for their influence on the quality 

characteristic. Actually, if we select the 

controllable factors and noise factors 

carelessly, this can lead to false conclusions 

and may require the experiments to be 

repeated. The desired number of levels must be 

determined after selecting the factors. In this 

paper, the ANN parameters are used as the 

controllable factors, and we do not have any 

noise factor. The numbers of levels for the 

ANN parameters are defined in table 2. In the 
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next step, we should assign a physical value to 

each level of controllable factors. 

D. Selecting an orthogonal array: it is clear that 

testing all combinations of the factor levels is 

required in the full factorial experiment. For 

example, a study involving 6 factors with three 

levels for each factor would require 

3^4×2^2=324 experiments. Orthogonal arrays 

produce smaller and less-costly experiments. 

Using an L_27 (3^5) orthogonal array, for 

example, a study involving 5 factors with three 

levels for each factor can be conducted with 

only 27 experiments. In addition to being 

efficient, the procedures used for using 

orthogonal arrays are straightforward and easy 

to use. In this paper, in order to reduce the 

number of experiments, an L_36 (3^6) 

orthogonal array is selected. This array implies 

only 36 experiments. 

E. Conducting the experiment and analysis: 
conducting the experiments includes execution 

of the experiment as developed in the planning 

and design phases. The analysis phase of 

experimentation is related to calculations for 

converting raw data into the representative 

signal-to-noise ratio (SNR). SNR, as a 

measurement tool for determining robustness, 

is a critical component to an optimal parameter 

design. SNR can be adopted as the index of the 

system ability to perform well regardless of the 

noise by including the impact of noise factors 

on the process. By successfully applying this 

concept to experimentation, it is possible to 

determine the design parameters of ANN that 

can produce the minimum estimation errors 

while maximizing SNR. 

 In the case of the smaller-the-better quality 

characteristic, SNR can be written as Eq. 3: 

m estITAE F F dt   (3) 

where, mF is the measured force, estF  is the 

estimated force, and ITEA is the integral force 

error. Consequently, SNR can be defined as: 

SNR= -10log  (4) 

The Taguchi method reduces the number of 

experiments over the full-factorial approach. 

Therefore, to provide the levels of confidence in 

the results, it is valuable to use the statistical 

analysis of experiments, which are called the 

analysis of variance (ANOVA). Furthermore, 

ANOVA identifies and ranks the variables that 

affect the variance of the output signal. ANOVA 

is one of the main steps in using the Taguchi 

method. 

 

4. Experimental 

4.1 Setup and sEMG data collection 

Four channels of sEMG signals are used as the 

main input signals in order to estimate the 

participants real force. Locations of the sEMG 

electrodes are shown in figure 4. Each channel 

mainly corresponds to one muscle, as shown in 

table 1. To determine the magnitude of the sEMG 

signals of the knee extensors, our participants 

were seated on a dynamometer (Biodex - 

System3, Biodex Medical Systems Inc., USA) 

with a hip angle of 85°.  

 

 

Figure 4. The locations of sEMG electrodes. 

Table 1 . Muscles for each sEMG channel. 
EMG 

Channel 
Ch-1 Ch-2 Ch-3 Ch-4 

Muscle 
Vastus 

Lateralis 

Rectus 

Femoris 

Vastus 

Medialist 

Bicep 

Femoris 

 

Electrodes (Ag/AgCl) with an electrolytic gel 

interface were positioned above the midpoint of 

the muscle belly (with 2 cm distance on inter-

electrodes) of the Rectus Femoris, Vastus 

Lateralis, Vastus medialis, and Biceps Femoris 

(Figure 3). Moreover, the reference electrodes 

were located on the patella bone. The skin was 

carefully shaved and cleaned with alcohol in order 

to reduce the skin impedance. To reduce the 

motion artefacts of the electrodes, they were 

further secured to the skin with an elastic tape, 

together with the preamplifier. Prior to the 

experiment, the leg was passively shaken to check 

the mechanical artefacts of the sEMG signals 

from each muscle. Several tests (e.g. contractions 

against manual resistance in knee flexion and 

extension) were performed to visualize whether a 

good signal was produced from each muscle. 

When artefacts or poor signals were observed, the 

preparation procedure was repeated. ME6000 was 

used to record the sEMG signal from muscle in 

ITAE
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Sport Sciences Research Institute of IRAN 

(SSRI). The data collected from the EMG sensor 

was sampled using a 2000 Hz sampling 

frequency. 
 

4.2 Design of experiments(DoEs) 

The experimental region was decided as per 

Taguchi design approach. The number of levels 

for each controllable process parameter was 

provided in table 2. A wide experimental region 

was covered so that the sensitivity to noise factors 

did not change with small variations in these 

factor settings, and to obtain optimum regions for 

the process parameters. Therefore, each parameter 

was analysed at different levels of the ANN 

parameters. The cascade-forward back-

propagation and MLP back-propagation ANN 

with three training functions(LM, Boydon–

Fletcher–Goldfarb–Shanno, GDA) were 

considered in this study. The number of neurons 

was varied from 1 to 10 and the number of hidden 

layer was varied from 2 to 4. Three transfer 

functions (PURELIN, LOGSIG, and TANSIG) 

were used in this work. The two different learning 

functions  gradient descent (GD) and gradient 

descent with momentum (GDM), frequently used 

for ANN were also considered. These factors and 

their levels used for DoE are shown in table 2. 

After deciding the parameters and their levels, the 

Taguchi design approach was applied to decide 

the experimental region. An orthogonal array 

L_36, which was designed for these factors is 

shown in table 3.  

Table 2. ANN parameters levels. 
 Levels 

Parameters Range 1 2 3 

Learning Function(LF) - GD GDM - 

Training Function(TrF) - LM BFGS GDA 

Number of hidden 

Layers(NL) 
2-4 2 3 4 

Number of 

neurons(Nn) 
1-10 1 5 10 

Topology of ANN(TP) - MLP Cascade  

Transfer Function(TF) - TAN PUR LOG 

 

The experiments were conducted as per L_36 

orthogonal array for the set of parameters shown 

in table 3. MSE was calculated for all trials as per 

the L_36 orthogonal array to understand the 

process parameter characteristics and optimum 

setting of user-defined parameters. 

By plotting the average response value for each 

factor level (Figure 5), relative comparisons of the 

slope between the points plotted can be made.  

Table 3. Orthogonal for different factors of ANN. 

 
NO TP LF TrF NL Nn TF ITAE 

1 1 1 1 1 1 1 215.4 

2 1 1 2 2 2 2 220.0 

3 1 1 3 3 3 3  251.5 

4 1 1 1 1 1 1 215.4 

5 1 1 2 2 2 2 220.0 

6 1 1 3 3 3 3 251.5 

7 1 1 1 1 2 3 236.6 

8 1 1 2 2 3 1 183.4 

9 1 1 3 3 1 2 223.7 

10 1 2 1 1 3 2  252.3 

11 1 2 2 2 1 3  216.4 

12 1 2 3 3 2 1 246.7 

13 1 2 1 2 3 1  551.0 

14 1 2 2 3 1 2  205.9 

15 1 2 3 1 2 3  215.1 

16 1 2 1 2 3 2  216.3 

17 1 2 2 3 1 3  215.0 

18 1 2 3 1 2 1  213.8 

19 2 1 1 2 1 3  176.2 

20 2 1 2 3 2 1  170.6 

21 2 1 3 1 3 2  249.5 

22 2 1 1 2 2 3  183.8 

23 2 1 2 3 3 1  694.5 

24 2 1 3 1 1 2  254.0 

25 2 1 1 3 2 1  321.2 

26 2 1 2 1 3 2  250.2 

27 2 1 3 2 1 3  211.3 

28 2 2 1 3 2 2  317.9 

29 2 2 2 1 3 3  245.3 

30 2 2 3 2 1 1  187.7 

31 2 2 1 3 3 3  213.1 

32 2 2 2 1 1 1  188.9 

33 2 2 3 2 2 2  199.2 

34 2 2 1 3 1 2  555.2 

35 2 2 2 1 2 3  247.6 

36 2 2 3 2 3 1  294.6 

 

With this best combination of design parameters, 

SNR increased to about 100%. The results 

obtained were confirmed by the ANOVA 

analysis. 

The percentage contributions are shown in table 4. 

The main purpose of this analysis was to estimate 

the effect of each factor on the results. 
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Figure 5. Main effects plot for SNRs. 

Table 4. Percentage contribution. 
Controller 

 Parameter 

Percentage  

contribution 

P-value 

TP 12.01 % 0.236 

LF 9.02 % 0.617 

Trf 10.12 % 0.817 

NL 19.42 % 0.138 

Nn 19.01 % 0.147 

TF 14.22 % 0.390 

ANOVA 

Error 

16.20 %  

 

The ANOVA analysis shows that NL and Nn  

have the biggest percentage contributions. This 

confirms the results show in figure 5, which 

illustrates that SNR values for the levels of NL

and Nn  differ significantly. It is important to note 

that the error contribution computed with 

ANOVA gives an idea of the confidence in the 

results. 

P-values, which report the significance level of 

the parameters are shown in the second column of 

table 4.  The trend confirms that at stage 4, while 

NL and Nn have minimum P-value, which means 

that these parameters significantly contribute 

toward ANN estimation,  LF and TrF do not have 

important effects on the improvement of SNR.  

To compare the proposed optimized ANN with 

manual tuning ANN parameters, the result of 

Simulink in MATLAB were compared. The Total 

error of estimation across 84 seconds was 3.45 for 

MATLAB manual tuning ANN and 6.32 for the 

proposed optimized ANN. 
 

 

 

Figure 6. Force estimation by the optimized ANN. 

 

We can vividly assert that the proposed method is 

more efficient than manual tuning. 

The force estimated by the optimized ANN based 

on the Taguchi method is shown in figure 6, 

where the black line represents the measured force 

by load cells and red line represents the force 

estimated by ANN. As we can vividly realize, the 

performance of optimized ANN is well, and it can 

estimate the human force appropriately.  

 

5. Results and Discussion 

The highlights of this paper can be summarized as 

follows: 

 Use of the DoE technique, presented in this 

paper, allow the researchers to obtain the 

optimum combinations of the ANN parameter 

settings with a minimal number of 

experiments among a large possible number 

of experiments. Using the Taguchi L_36 

design, only 36 experiments were gathered 

and used to train the ANN model. The 

minimum number of experiments results in 

time and cost savings. 

 By a close observation of the experimental 

table, it can be observed that the optimal 

combination settings suggested by the 

Taguchi method, is not any of the existing 

runs of the table. 

 Verification runs, using the optimum ANN 

parameters, showed that the ANN model 

produced acceptable results.   

 The authors believe that the optimum settings 

of the ANN parameters are largely problem- 

dependent. Optimization process should be 

performed for each application, as the 

significant factors might be different for ANN 

trained for different purposes.  
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6. Conclusion 

The objective of this paper was to use the Taguchi 

method to determine the optimal ANN parameters 

for the human force estimation. To the best of the 

author’s knowledge, application of the statistical 

technique and ANN to estimate human force from 

the sEMG signals as not yet been reported in the 

literature. Using an L_36 orthogonal array, only 

36 experiments were designed, and an effective 

ANN model was trained.  Using the Taguchi 

technique, additional combinations of 

experiments, not originally tested, were able to be 

predicted. The results obtained indicate that the 

best settings for the ANN parameters are learning 

function: GDM, training function: BFGS, umber 

of hidden layer: 5, number of neurons: 5, type of 

ANN: MLP and transfer function: GDA. 

Additionally, contribution of the parameters in the 

regression model indicates that Nn and NL have 

the most percent contribution while LF has the 

least one. The results obtained demonstrate that 

the Taguchi method is an effective tool in 

identifying the optimal ANN parameters. 
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