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AMENABILITY OF VECTOR-VALUED GROUP
ALGEBRAS

A. GHAFFARI AND S. JAVADI∗

Abstract. The purpose of carrying out this work is to develop
the amenability notations for vector-valued group algebras. We
prove that L1(G,A) is approximately weakly amenable where A
is a unital separable Banach algebra. We give the necessary, and
sufficient conditions for the existence of a left invariant mean on
L∞(G,A∗), LUC(G,A∗), WAP (G,A∗), and C0(G,A∗).

1. Introduction

In 1972, B. E. Johnson proved that a locally compact group G is
amenable if and only if L1(G) is amenable [7]. The concept of John-
son’s amenability for Banach algebras has been a main stream in the
theory of Banach algebras. Here we develop the concept of Johnson’s
amenability for vector-valued Banach algebras.

Let G be a locally compact group with a fixed left Haar measure
m and A be a unital separable Banach algebra. Let L1(G,A) be the
set of all measurable vector-valued (equivalence classes of) functions
f : G → A such that ∥f∥1 =

∫
G
∥f(t)∥dm(t) < ∞. Equipped with the

norm ∥.∥1 and the convolution product * specified by:

f ∗ g(x) =
∫
f(t)g(t−1x)dm(t) (f, g ∈ L1(G,A)),

L1(G,A) is a Banach algebra. We prove the analogues of the classical
results on amenability of Banach algebras. We show that G is amenable
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if and only if L1(G,A) is amenable for each unital separable Banach
algebra A. The symbol M(G,A) stands for the space of regular A-
valued Borel measures of bounded variation on G. The space L1(G,A)
is a closed two-sided ideal of M(G,A).

Let L∞(G,A∗) be the set of all functions f of G into A∗ that are
scalarwise measurable and N∞(∥f∥) = loc ess supt∈G(∥f(t)∥) < ∞.
From now on, A will be a separable Banach algebra. By Theorem 8.18.2
in [5], the dual of L1(G,A) may be identified with L∞(G,A∗). Note that
the dual of L1(G,A) is in general not L∞(G,A∗). We show that every
continuous derivation, from L1(G,A) into L∞(G,A∗) is approximately
inner, that is, of the form

D(a) = lim
α
(Fα.a− a.Fα)

for some {Fα}α∈I ∈ L∞(G,A∗).
Let C(G,A∗) be the space of bounded continuous functions from G

into A∗, let C0(G,A
∗) be the continuous functions from G into A∗ van-

ishing at infinity and let C00(G,A
∗) be the continuous functions from

G into A∗ with compact support under the norm ∥f∥ = supt∈G ∥f(t)∥.
For f ∈ L∞(G,A∗), set Lxf(t) = f(xt)(x, t ∈ G). Then f is called
left uniformly continuous, if the map x 7→ Lxf from G into L∞(G,A∗)
is continuous with respect to N∞(∥f∥) on L∞(G,A∗). The set of uni-
formly continuous functions is denoted by LUC(G,A∗). A function
f ∈ C(G,A∗) is called weakly almost periodic if the set {Lxf : x ∈ G}
is relatively compact in the weak-topology on C(G,A∗). The set of
weakly almost periodic functions are denoted by WAP (G,A∗). In the
case A = C, the complex field, these spaces are denoted by L1(G),
M(G), C(G), C0(G), C00(G), LUC(G) and WAP (G). For general
terms in vector-valued functions, we follow [5].

The left invariant means on spaces of vector-valued functions were
first considered by Dixmier in [3]. In this work, we set up a relation
between a vector-valued mean and a scalar-valued mean, by which we
will be able to translate many important results developed in the classic
theory. We also present some of the properties of left invariant means
on LUC(G,A∗), WAP (G,A∗) and C0(G,A

∗). Our references for the
vector-valued integration theory are [1], [2] and [5].

2. Main results

Definition 2.1. Let A be a Banach algebra and X be a subspace of
L∞(G,A∗). A map M : L∞(G,A∗) → A∗ is called a mean on X if
(i) M is linear;

(ii) For each f ∈ X, M(f) belongs to the set co{f(x) : x ∈ G}, where
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closure is taken in the weak∗-topology, and coX denotes the convex
hull of a set X.

If X is also left invariant, thenM is called left invariant ifM(Laf) =
M(f) for each a ∈ G and f ∈ X. Dixmier showed in [3] that if m is a
left invariant mean on L∞(G). Then m induces a left invariant mean
M on L∞(G,A∗) such that ⟨M(f), a⟩ = m(⟨f(.), a⟩) for each a ∈ A,
here ⟨f(.), a⟩ denotes the functions x 7→ ⟨f(x), a⟩.

Let A and B be two Banach algebras, and let A be a closed ideal
in B. For each a ∈ A, put ρa(b) := ∥ba∥ + ∥ab∥ (b ∈ B), then ρa is
a seminorm. The topology defined on B by these seminorms is called
the strict topology. We write B∗st for the dual of B with respect to the
strict topology.

Theorem 2.2. Let G be a locally compact group. Then G is amenable
if and only if L1(G,A) is amenable for each unital separable Banach
algebra A.

Proof. Suppose that L1(G,A) is amenable for each unital separable Ba-
nach algebra A. Consider A = C. Then G is amenable [7]. Conversely,
let X be a Banach L1(G,A)-bimodule, and let D : L1(G,A) → X∗

be a continuous derivation. By Proposition 8.1 in [4], L1(G,A) has a
bounded approximate identity. Then there is no loss of generality if we
suppose that X is pseudo-unital. By Proposition 2.1.6 in [12], there is
a unique D : M(G,A) → X∗ that extends D and is continuous with
respect to the strict topology on M(G,A), and the weak∗-topology on
X∗.

We can embed G into M(G,A). The map δx : G → M(G,A) given
by δx(H) = χH(x)eA for each x ∈ G and H ⊆ G is the required
embedding. We claim that ∆ = {δx : x ∈ G} is dense in M(G,A)
with respect to the strict topology. We assume to the contrary that
µ is not in ∆ where closure is taken in the strict topology, thus there
are some f ∈ M(G,A)∗

st
, such that ⟨f, µ⟩ = 1, ⟨f, δx⟩ = 0 for each

x ∈ G. By Proposition 23.18 and Proposition 23.33 in [2], the map
x 7→ δx is continuous with respect to the strict topology. This implies
that ⟨f, µ⟩ =

∫
⟨f, δx⟩dµ(x) = 0 [11].

It suffices to show that D |∆ is inner. Because, if µ ∈M(G,A), there
will be a net {δxα}α∈I in ∆ with δxα → µ in the strict topology. So
D(δxα) → D(µ) in the weak∗-topology. But, there is β∗ ∈ X∗ such that
D(µ) = w∗

k− limα(β
∗.δxα −δxα .β

∗). Now let β ∈ X. Since X is pseudo-
unital Banach L1(G,A)-bimodule, then there are f1, f2 ∈ L1(G,A)
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and β́ ∈ X such that β = f1.β́.f2. Hence:

⟨β∗.δxα − δxα .β
∗, β⟩ = ⟨β∗.δxα − δxα .β

∗, f1.β́.f2⟩
→ ⟨β∗.µ− µ.β∗, β⟩.

Consequently:

D(µ) = β∗.µ− µ.β∗.

Consider the constant function 1 ∈ L∞(G). There is a function
f0 : G → A∗ by f0(x) = ⟨1, x⟩a∗ (a∗ ∈ A∗, x ∈ G). More gen-
erally, each function g ∈ L∞(G) has the form ⟨f(.), a⟩ with a ̸= 0,
a∗ ∈ A∗, ⟨a∗, a⟩ = 1 and f(x) = ⟨g, x⟩a∗. For each β ∈ X, define
⟨Λβ, µ⟩ = ⟨D(µ)µ, β⟩ (µ ∈ M(G,A)). Put Λβ́ = Λβ|∆. Now de-

fine ⟨ρβ, x⟩ = ⟨Λβ́, δx⟩ = ⟨D(δx).δx, β⟩ (x ∈ G). Since ρβ ∈ L∞(G),

then there are some fβ ∈ L∞(G,A∗) such that fβ(x) = ρβ(x)a
∗ (a∗ ∈

A∗, x ∈ G). By assumption, there ism ∈ L∞(G)∗ such that ⟨m, 1⟩ = 1,
⟨m,Lxf⟩ = ⟨m, f⟩ for each f ∈ L∞(G) and x ∈ G. Thus m induces a
left invariant mean M on L∞(G,A∗). Now put ⟨λ, β⟩ = ⟨M, fβ⟩. The
space X becomes a Banach ∆-module via δx□β = β, β□δx = δx. β. δx
(x ∈ G, β ∈ X). Then dual actions on X∗ are given by β∗□δx =
β∗, δx□β∗ = δx. β

∗. δx.
Define D0(δx) = D(δx). δx. It is routinely checked that D0 is a

derivation, and D is inner if and only if D0 is inner for this new module
structure. It remains to be shown that D0 is inner. For δx0 ∈M(G,A),

⟨δx0□λ− λ□δx0 , β⟩ = ⟨λ, β□δx0 − δx0□β⟩
= ⟨λ, β□δx0 − β⟩ = ⟨M, fβ□δx0−β⟩.

Furthermore, we have

⟨fβ□δx0−β, x⟩ = ⟨ρβ□δx0−β, x⟩a∗ = D(δx).δx(β□δx0 − β)a∗

= D0(δx)(β□δx0 − β)a∗ = ⟨δx0□D0(δx)−D0(δx), β⟩a∗

= ⟨D0(δx0δx)−D0(δx0)□δx −D0(δx), β⟩a∗

= ⟨D0(δx0δx), β⟩a∗ − ⟨D0(δx0), β⟩a∗ − ρβ(x)a
∗

= ⟨ρβ, x0x⟩a∗ − ⟨D0(δx0), β⟩⟨1, x⟩a∗ − ρβ(x)a
∗

= fβ(x0x)− ⟨D0(δx0), β⟩f0(x)− fβ(x),

then ⟨δx0□λ − λ□δx0 , β⟩ = −⟨D0(δx0), β⟩. It follows that D0(δx0) =
δx0□λ0 − λ0□δx0 where λ0 = −λ. Thus D0 is inner. □

Theorem 2.3. Let G be a locally compact group. Then the following
statements are equivalent:

(i) G is amenable.
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(ii) For every unital separable Banach algebra A, there exists a
bounded net {ψα}α∈I ⊆ L1(G,A) such that ∥δx ∗ψα−ψα∥1 → 0
whenever x ∈ G.

(iii) For every unital separable Banach algebra A, there exists a
bounded net {ψα}α∈I ⊆ L1(G,A) such that for every compact
set K ⊆ G, ∥ψ ∗ψα −ψα∥1 → 0 uniformly for all ψ ∈ L1(G,A)
with

∫
G\K ∥ψ(t)∥dm(t) = 0.

Proof. Consider A = C. Then Theorem 6.7 in [10] yields (ii) =⇒ (i),
(iii) =⇒ (i).

(i) =⇒ (ii) Suppose that G is amenable. Let m be a left invariant
mean on L∞(G), and M be an induced mean on L∞(G,A∗). Choose
a ∈ A such that, ∥a∥ = 1. Define ⟨Γa, f⟩ = ⟨M(f), a⟩ for each f ∈
L∞(G,A∗). Regards Γa as an element of L∞(G,A∗)∗. The rest of the
proof is essentially the same as the Lemma 6.3 in [10].

(i) =⇒ (iii) This is just a re-statement of Proposition 6.7 in [10]. □

Let {eα}α be a bounded approximate identity for L1(G) and eA be
an identity in A. By Proposition 8.1 in [4], {eα ⊗ eA}α is a bounded
approximate identity for L1(G)⊗̂A where ⊗̂ denotes the completion of
usual tensor product of Banach spaces with respect to the projective
tensor norm. We consider {eα ⊗ eA}α as an element in (L1(G)⊗̂A)∗∗
and F ∈ (L1(G)⊗̂A)∗. Using exactly the same notation as in [6], we
put ⟨(eα ⊗ eA), F ⟩ =

∫
Fd(eα ⊗ eA). Given a dual Banach space X∗

and F ∈ B(L1(G), A;X∗), we define
∫
Fd(eα ⊗ eA) ∈ X∗ by

⟨
∫
Fd(eα ⊗ eA), x⟩ =

∫
⟨F (f, a), x⟩d(eα ⊗ eA)(f, a),

where f ∈ L1(G), a ∈ A and x ∈ X.

Theorem 2.4. Let G be a locally compact group and let A be a uni-
tal separable Banach algebra. Then L1(G,A) is approximately weakly
amenable.

Proof. Let D : L1(G,A) → L1(G,A)
∗
be a continuous derivation.

It is well-known that the space L1(G,A) is isometrically isomorphic
to L1(G)⊗̂A. Therefore we define F : L1(G) × A → L1(G,A)

∗
by

F (f, a) = D(f ⊗ a). Put, gα =
∫
F (f, a)d(eα ⊗ eA)(f, a). We know

that L1(G,A)
∗ ∼= L∞(G,A∗). Then for each F (f, a) ∈ L1(G,A)∗,

its image under isometry onto L∞(G,A∗) is a map whose values at
x ∈ G is F (f, a)(x) = ⟨D(f ⊗ a), x⟩. We put F x : L1(G) × A →
A∗ with F x(f, a) = F (f, a)(x), f ∈ L1(G), a ∈ A, and x ∈ G.
Note that F x ∈ B(L1(G), A;A∗). By the above argument, we define
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F x(f, a)d(eα ⊗ eA)(f, a) ∈ A∗ by

⟨
∫
F x(f, a)d(eα⊗eA)(f, a), c⟩ =

∫
⟨F x(f, a), c⟩d(eα⊗eA)(f, a), (c ∈ A).

The map x 7→ gα(x) =
∫
F (f, a)(x)d(eα ⊗ eA)(f, a) is a scalarwise

measurable function, and N∞(∥gα(x)∥) < ∞ for each α. Then, by
Theorem 8.18.2 in [5], there is a map κgα in B(A,L∞(G)) such that,
⟨κgα(a), f⟩ =

∫
f(x)⟨gα(x), a⟩dm(x) for each f ∈ L1(G), and a ∈ A,

where κgα is defined by κgα(a) = ⟨gα(x), a⟩.
Using the same notation as in [6], we have eα ⊗ eA =

∫
f ⊗ gd(eα ⊗

eA)(f, g). Moreover, eα ⊗ eA is a bounded approximate identity for
L1(G)⊗̂A. Therefore, for each F : L1(G) × A → L1(G,A)

∗
, f, g ∈

L1(G), and a, b ∈ A, we have

lim
α

∫
F (fg, ab)d(eα ⊗ eA)(f, a)= lim

α
⟨
∫

(fg ⊗ ab)d(eα ⊗ eA)(f, a), F ⟩

= lim
α
⟨
∫
(gf ⊗ ba)d(eα ⊗ eA)(f, a), F ⟩

= lim
α

∫
F (gf, ba)d(eα ⊗ eA)(f, a).

Hence

lim
α
(g ⊗ b)⟨f́ , κgα(á)⟩

= lim
α

∫
f́(x)⟨(g ⊗ b).gα(x), á⟩dm(x)

= lim
α

∫
f́(x)⟨

∫
(g ⊗ b).D(f ⊗ a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

= lim
α

∫
f́(x)⟨

∫
D(gf ⊗ ba)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

− lim
α

∫
f́(x)⟨

∫
D(g ⊗ b).(f ⊗ a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

=

∫
f́(x) lim

α
⟨
∫
F (gf, ba)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

−
∫
f́(x) lim

α
⟨D(g ⊗ b)

∫
(f ⊗ a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

=

∫
f́(x) lim

α
⟨
∫
F (fg, ab)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)

−
∫
f́(x)⟨D(g ⊗ b)(x), á⟩dm(x)
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=

∫
f́(x) lim

α
⟨
∫
F (f, a)(x)d(eα ⊗ eA)(f, a), á⟩dm(x)(g ⊗ b)

−
∫
f́(x)⟨D(g ⊗ b)(x), á⟩dm(x)

= lim
α

∫
f́(x)⟨gα(x), á⟩dm(x)(g ⊗ b)−

∫
f́(x)⟨D(g ⊗ b)(x), á⟩dm(x)

= lim
α
⟨f́ , κgα(á)⟩(g ⊗ b)− ⟨f́ , κD(g⊗b)(á)⟩

for all g ⊗ b ∈ L1(G)⊗ A, á ∈ A and f́ ∈ L1(G,A). Consequently,

lim
α
((g ⊗ b)κgα(á)− κgα(á)(g ⊗ b)) = −κD(g⊗b)(á)

lim
α
⟨(g ⊗ b).gα(x), á⟩ − ⟨gα(x).(g ⊗ b), á⟩ = −⟨D(g ⊗ b)(x), á⟩

for all g ⊗ b ∈ L1(G)⊗ A and á ∈ A. It follows that

D(g ⊗ b) = lim
α
((g ⊗ b).ǵα − ǵα.(g ⊗ b))

for all g ⊗ b ∈ L1(G)⊗ A, where ǵα = −gα. □
It is known that G is amenable if and only if LUC(G) has a left

invariant mean. It is interesting to have a direct proof of this fact. We
present a vector version of this characterization.

Theorem 2.5. Let G be a locally compact group, and let A be a unital
separable Banach algebra. Then:

(i) L∞(G,A∗)L1(G,A) = LUC(G,A∗).
(ii) G is amenable if and only if LUC(G,A∗) has a left invariant

mean.

Proof. (i) Let f ∈ LUC(G,A∗). Let {Uα} be a net of neighborhoods
of e directed downwards. Let {να}α∈I be an approximate identity of
norm 1 in L1(G,A) such that suppνα ⊆ Uα. Given ϵ > 0, there exists
α0 ∈ I such that for each α ≥ α0 and y ∈ Uα , N∞(∥fy − f∥) < ϵ.
Then

|⟨f.να, µ⟩ − ⟨f, µ⟩|
= |⟨f, να ∗ µ⟩ − ⟨f, µ⟩|

=
∣∣∣ ∫ ⟨f(t), να ∗ µ(t)⟩dm(t)−

∫
⟨f(t), µ(t)⟩dm(t)

∣∣∣
=

∣∣∣ ∫ ⟨f(t),
∫
µ(y−1t)dνα(y)⟩dm(t)−

∫
⟨f(t), µ(t)⟩dm(t)

∣∣∣
=

∣∣∣ ∫ ⟨f(yt),
∫
µ(t)dνα(y)⟩dm(t)−

∫
⟨f(t), µ(t)⟩dm(t)

∣∣∣
≤ N∞(∥fy − f∥)∥µ∥∥να∥1.
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On the other hand, f.να ∈ L∞(G,A∗)L1(G,A), and L∞(G,A∗)L1(G,A)
is a Banach space. It follows that f ∈ L∞(G,A∗)L1(G,A). It is easy to
see that L∞(G,A∗) L1(G,A) ⊆ LUC(G,A∗), and so L∞(G,A∗)L1(G,A)
= LUC(G,A∗).

(ii) This follows from (i) and the proof of Lemma 3.2 in [9]. □

Let A be a Banach algebra. Recall that a functional f ∈ A∗ for which
{f.a : ∥a∥ ≤ 1, a ∈ A} is relatively compact in the weak-topology
of A∗ is said to be weakly almost periodic. The set of weakly almost
periodic functionals on A is denoted by WAP (A) (see [8]). It is known
that WAP (G) = WAP (L1(G)) [13]. Note that for f ∈ L∞(G,A∗) and
µ ∈M(G,A), we define ⟨fµ, ν⟩ = ⟨f, µ ∗ ν⟩ for every ν ∈ L1(G,A).

Theorem 2.6. Let G be a locally compact group, and A be a unital
separable Banach algebra. Then:

(i) If f ∈ L∞(G,A∗), then f ∈ WAP (L1(G,A)) if and only if
{fδx : x ∈ G} is relatively weakly compact in L∞(G,A∗).

(ii) WAP (L1(G,A)) = WAP (G,A∗).
(iii) WAP (L1(G,A)) has a left invariant mean.

Proof. (i) Let f ∈ WAP (L1(G,A)). It is known that C0(G,A)
∗ =

M(G,A∗) [2]. Now consider δx ∈ M(G,A∗). By the Hhan Banach
Theorem, we may assume that m ∈ L∞(G,A∗)∗ is an extension of δx
with norm one. Then there is a net {µα}α∈I in L1(G,A) with ∥µα∥ ≤
1 such that µα → m in the weak∗-topology. Hence, for every ϕ ∈
L1(G,A),

⟨ϕ.f, µα⟩ → ⟨ϕ.f,m⟩.
Since {f.µ : ∥µ∥ ≤ 1, µ ∈ L1(G,A)} is relatively weakly compact,
then there is an element g ∈ L∞(G,A∗) and a subnet {µβ}β∈I of
{µα}α∈I such that f.µβ → g in the weak-topology. On the other
hand, ⟨m,ϕ.f⟩ = ⟨δx, ϕ.f⟩ = ⟨fδx, ϕ⟩, and so g = fδx. Thus the

set {fδx : x ∈ G} is contained in {f.µ : ∥µ∥ ≤ 1, µ ∈ L1(G,A)},
where closure is taken in the weak-topology, and the compactness of
{fδx : x ∈ G} follows from the compactness of {f.µ : ∥µ∥ ≤ 1}.

Conversely, suppose that f ∈ L∞(G,A∗) and µ ∈ L1(G,A) with
∥µ∥ ≤ 1, and {fδx : x ∈ G} is relatively weakly compact. By the
Krein-Smulian Theorem, co{fδx : x ∈ G} is relatively weakly compact.
We claim that

fµ ∈ co{fδx : x ∈ G},
where closure is taken in the weak-topology. We assume to the contrary
that fµ is not in co{fδx : x ∈ G}. By the Hahn Banach Theorem,
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there exists F ∈ L∞(G,A∗)∗, such that

Re|⟨F, fµ⟩| ≥ γ1 > γ2 > Re|⟨F, fδx⟩|,

where γ1, γ2 ∈ R, and x ∈ G. By Theorem 8.14.8 in [5], the inte-
gral

∫
fδxdµ belongs to L∞(G,A∗). Moreover, for any ν ∈ L1(G,A),

⟨
∫
fδxdµ, ν⟩ =

∫
⟨f.δx, ν⟩dµ =

∫
⟨f, δx ∗ ν⟩dµ = ⟨f, µ ∗ ν⟩ = ⟨fµ, ν⟩

(see Chapter 3 in [11]). By Theorem 3.28 in [11], we have

|⟨F, fµ⟩| = |
∫

⟨F, fδx⟩dµ| ≤
∫

|⟨F, fδx⟩|d|µ|(x) < Re⟨F, fµ⟩.

This is a contradiction, and so {f.µ : ∥µ∥ ≤ 1, µ ∈ L1(G,A)} is
contained in the closure of co{fδx : x ∈ G}, and the compact-

ness of {f.µ : ∥µ∥ ≤ 1, µ ∈ L1(G,A)} follows from the compactness of

co{fδx : x ∈ G}. Consequently, f ∈ WAP (L1(G,A)), and the proof
is complete.

(ii) Let f ∈ WAP (G,A∗). Then the set {Lxf : x ∈ G} is rela-
tively weakly compact in C(G,A∗). Note that for each x ∈ G, we
have ⟨fδx, µ⟩ = ⟨f, δx ∗ µ⟩ =

∫
⟨f(t),

∫
µ(y−1t)dδx(t)⟩dm(t) = ⟨Lxf, µ⟩.

Then, by the Eberlien-Smulian Theorem, {fδx : x ∈ G} is relatively
weakly compact in L∞(G,A∗), and from (i), f ∈ WAP (L1(G,A)).

Conversely, let f ∈ WAP (L1(G,A)). The map x 7→ fδx is contin-
uous with respect to the weak∗-topology. From (i), {fδx : x ∈ G}
is relatively weakly compact. Then x → fδx is continuous with re-
spect to the weak-topology. Now, let {Uα} be a net of neighborhood
of e directed downwards. Let {να}α∈I be an approximate identity of
norm 1 in L1(G,A) such that suppνα ⊆ Uα. Given ϵ > 0 and F ∈
L∞(G,A∗)∗, there exists an α0 such that for each α ≥ α0 and x ∈ Uα,
|⟨F, fδx⟩−⟨F, f⟩| < ϵ, and so |

∫
⟨F, fδx⟩dνα−⟨F, f⟩| < ϵ. By Theorem

8.14.8 in [5] and the Krein-Smulian Theorem,
∫
fδxdνα ∈ L∞(G,A∗).

Moreover, for any µ ∈ L1(G,A), ⟨
∫
fδxdνα(x), µ⟩ = ⟨fνα, µ⟩. There-

fore, for each α ≥ α0,

|⟨F, fνα⟩ − ⟨F, f⟩| = |⟨F,
∫
fδxdνα(x)⟩ − ⟨F, f⟩|

= |
∫

⟨F, fδx⟩dνα − ⟨F, f⟩| < ϵ.

So fνα → f in the weak-topology. An argument similar to that in
the proof of Lemma 6.3 in [10] shows that we can find a bounded net
{να}α∈I consisting of convex combination of elements in {να}α∈I such
that fνα → f in the norm topology. In addition, L∞(G,A∗)L1(G,A)
is a Banach space. Then from Theorem 2.5, f ∈ C(G,A∗). Since
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{fδx : x ∈ G} is relatively weakly compact, then by the Eberlian-
Smulian Theorem, {Lxf : x ∈ G} is relatively weakly compact in
C(G,A∗). Hence, f ∈ WAP (G,A∗).

(iii) It is an immediate consequence of Theorem 4.3 in [14] and
(ii). □

In the next theorem, we present an interesting property about a left
invariant mean when considered on C0(G,A

∗). Analogous to the scalar
function case, we can easily obtain the following theorem.

Theorem 2.7. Let G be a non-compact amenable group and let f ∈
C0(G,A

∗). IfM is left invariant mean on L∞(G,A∗), then |M(f)| = 0.

Proof. LetM be a left invariant mean on L∞(G,A∗) and f ∈ L∞(G,A∗).
Then the set {f(t) : ∥f(t)∥ ≤ ∥f∥∞} is weak∗-closed in A∗ andM(f) ∈
{f(x) : x ∈ G}, where closure is taken in the weak∗-topology. It fol-
lows that |M(f)| ≤ ∥f∥∞. Using the Urysohn Lemma, it is easy to see

that C00(G,A∗)
∥.∥

= C0(G,A
∗). Then it is enough to prove that the re-

sult in the case where f ∈ C00(G,A
∗). Let K = suppf . There exists an

infinite sequence {an}n∈N in G such that a0 = e, and (aiK)
∩
(ajK) =

∅, whenever i, j ∈ N, i ̸= j [10]. Put gn = Σn
i=0Laif (n ∈ N) . For any

n ∈ N,
|M(gn)| = |nM(f)| ≤ ∥gn∥∞ = ∥f∥∞.

Consequently, M(f) = 0. □
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برداری�مقدار باناخ جبرهای میانگین��پذیری

جوادی سمانه غفاری- علی
گیلان شرق فنی دانشکده گیلان- دانشگاه ریاضی دانشکده سمنان- دانشگاه

اگر می�دهیم نشان است. برداری��مقدار گروهی جبرهای میانگین�پذیری مفهوم توسیع مقاله این هدف
است. تقریبی ضعیف میانگین�پذیر L١(G,A) گروهی جبر آنگاه باشد، یکدار پذیر جدایی باناخ جبر A
و LUC(G,A∗),WAP (G,A∗) روی چپ پایای میانگین وجود برای کافی و لازم شرایط همچنین

می�کنیم. بررسی را C٠(G,A
∗)

پایا. میانگین گروهی، جبر مشتق، باناخ، جبر میانگین�پذیری، کلیدی: کلمات

١
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