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AMENABILITY OF VECTOR-VALUED GROUP
ALGEBRAS

A. GHAFFARI AND S. JAVADI*

ABSTRACT. The purpose of carrying out this work is to develop
the amenability notations for vector-valued group algebras. We
prove that L'(G, A) is approximately weakly amenable where A
is a unital separable Banach algebra. We give the necessary, and
sufficient conditions for the existence of a left invariant mean on
L>® (G, A"), LUC(G, A*), WAP(G, A*), and Cy(G, A*).

1. INTRODUCTION

In 1972, B. E. Johnson proved that a locally compact group G is
amenable if and only if L!(G) is amenable [7]. The concept of John-
son’s amenability for Banach algebras has been a main stream in the
theory of Banach algebras. Here we develop the concept of Johnson’s
amenability for vector-valued Banach algebras.

Let G be a locally compact group with a fixed left Haar measure
m and A be a unital separable Banach algebra. Let L'(G, A) be the
set of all measurable vector-valued (equivalence classes of) functions
[+ G — Asuch that || f||; = [, || f()][dm(t) < co. Equipped with the
norm ||.||; and the convolution product * specified by:

frgla) = / F(Og(t 2)dm(t) (f.9 € MG, A)),

L'(G, A) is a Banach algebra. We prove the analogues of the classical
results on amenability of Banach algebras. We show that G is amenable
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if and only if L'(G, A) is amenable for each unital separable Banach
algebra A. The symbol M (G, A) stands for the space of regular A-
valued Borel measures of bounded variation on G. The space L'(G, A)
is a closed two-sided ideal of M (G, A).

Let L>(G, A*) be the set of all functions f of G into A* that are
scalarwise measurable and Ny (|| f]|) = loc ess sup,o(||f(2)]]) < oo.
From now on, A will be a separable Banach algebra. By Theorem 8.18.2
in [5], the dual of L' (G, A) may be identified with L>°(G, A*). Note that
the dual of L'(G, A) is in general not L>(G, A*). We show that every
continuous derivation, from L'(G, A) into L>°(G, A*) is approximately
inner, that is, of the form

D(a) =1lim(F,.a — a.F,)

for some {F,}aer € L2(G, A¥).

Let C(G, A*) be the space of bounded continuous functions from G
into A*, let Cy(G, A*) be the continuous functions from G into A* van-
ishing at infinity and let Cyo(G, A*) be the continuous functions from
G into A* with compact support under the norm || f|| = sup,eq || f(2)]]-
For f € L>®(G,A"), set L,f(t) = f(zt)(z, t € G). Then f is called
left uniformly continuous, if the map x +— L, f from G into L>*(G, A*)
is continuous with respect to Noo(||f]]) on L>®(G, A*). The set of uni-
formly continuous functions is denoted by LUC(G,A*). A function
f € C(G, A*) is called weakly almost periodic if the set {L,f : = € G}
is relatively compact in the weak-topology on C(G, A*). The set of
weakly almost periodic functions are denoted by WAP(G, A*). In the
case A = C, the complex field, these spaces are denoted by L'(G),
M(G), C(G), Cy(G), Co(G), LUC(G) and WAP(G). For general
terms in vector-valued functions, we follow [5].

The left invariant means on spaces of vector-valued functions were
first considered by Dixmier in [3]. In this work, we set up a relation
between a vector-valued mean and a scalar-valued mean, by which we
will be able to translate many important results developed in the classic
theory. We also present some of the properties of left invariant means
on LUC(G,A*), WAP(G, A*) and Cy(G, A*). Our references for the
vector-valued integration theory are [1], [2] and [5].

2. MAIN RESULTS

Definition 2.1. Let A be a Banach algebra and X be a subspace of
L>*(G,A*). Amap M : L>(G, A*) — A* is called a mean on X if

(i) M is linear;

(i) For each f € X, M(f) belongs to the set co{f(z): x € G}, where
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closure is taken in the weak*-topology, and coX denotes the convex
hull of a set X.

If X is also left invariant, then M is called left invariant if M (L, f) =
M(f) for each a € G and f € X. Dixmier showed in [3] that if m is a
left invariant mean on L*°(G). Then m induces a left invariant mean
M on L*(G, A*) such that (M(f),a) = m({f(.),a)) for each a € A,
here (f(.),a) denotes the functions x — (f(z), a).

Let A and B be two Banach algebras, and let A be a closed ideal
in B. For each a € A, put p,(b) := ||bal| + ||ab]| (b € B), then p, is
a seminorm. The topology defined on B by these seminorms is called
the strict topology. We write B*** for the dual of B with respect to the
strict topology.

Theorem 2.2. Let G be a locally compact group. Then G is amenable
if and only if L'(G, A) is amenable for each unital separable Banach
algebra A.

Proof. Suppose that L'(G, A) is amenable for each unital separable Ba-
nach algebra A. Consider A = C. Then G is amenable [7]. Conversely,
let X be a Banach L'(G, A)-bimodule, and let D : L'(G,A) — X*
be a continuous derivation. By Proposition 8.1 in [1], L'(G, A) has a
bounded approximate identity. Then there is no loss of generality if we
suppose that X is pseudo-unital. By Proposition 2.1.6 in [12], there is
a unique D : M(G,A) — X* that extends D and is continuous with
respect to the strict topology on M (G, A), and the weak*-topology on
X*

We can embed G into M (G, A). The map 6, : G — M (G, A) given
by 0,(H) = xm(x)es for each x € G and H C G is the required
embedding. We claim that A = {0, : x € G} is dense in M (G, A)
with respect to the strict topology. We assume to the contrary that
(1 is not in A where closure is taken in the strict topology, thus there
are some f € M(G,A)™ such that (f,u) = 1, (f,d,) = 0 for each
r € G. By Proposition 23.18 and Proposition 23.33 in [2], the map
x — 0§, is continuous with respect to the strict topology. This implies
that (f, ) = [ {£.6.)dp(z) = 0 [11]

It suffices to show that D |4 is inner. Because, if u € M (G, A), there
will be a net {d,, }aes in A with §,, — p in the strict topology. So
D(d,,) — D(u) in the weak*-topology. But, there is 4* € X* such that
D(p) = wi —limgy (8.6, —6,,.8%). Now let 8 € X. Since X is pseudo-
unital Banach L'(G, A)-bimodule, then there are fi, fo € L'(G, A)
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and 5 € X such that g = fl.B.fQ. Hence:

(800, = 02,-8%,8) = (B".00, = 02,-87, f1.8-f2)
= (0% —p.f" 5).
Consequently:
D(p) =B — p.5"

Consider the constant function 1 € L*(G). There is a function
fo: G = A* by fo(x) = (1,z)a* (a* € A*, © € G). More gen-
erally, each function g € L*(G) has the form (f(.),a) with a # 0,
a* € A*, (a*,;a) = 1 and f(x) = (g,x)a*. For each 8 € X, define
(Mg, ) = (D), B) (n € M(G,A)). Put Ay = Ag|a. Now de-
fine (pg,x) = (Ag,02) = (D(8,).02,8) (z € G). Since ps € L=(G),
then there are some fz € L>(G, A*) such that fz(z) = ps(z)a* (a* €
A*, x € G). By assumption, there is m € L*(G)* such that (m, 1) = 1,
(m, L. f) = (m, f) for each f € L*(G) and x € G. Thus m induces a
left invariant mean M on L*(G, A*). Now put (A, 8) = (M, fz). The
space X becomes a Banach A-module via 6,8 = g, f00, = d,. 5. d,
(x € G, B € X). Then dual actions on X* are given by f*0JJ, =
p*, 6,06% = 6,. 5*. 0,.

Define Dy(d,) = D(8,). 6,. It is routinely checked that Dy is a
derivation, and D is inner if and only if Dy is inner for this new module
structure. It remains to be shown that Dy is inner. For 6,, € M (G, A),

(0s00N — N0y, 8) = (A, B0, — 62,008)
= (A, 06z, — B) = (M, fs06,,—5)-

Furthermore, we have

(fo06,,-5,7) = (ppos,,—p,)a" = D(0;).0,(B00z, — B)a”

= Do(0,)(B08,, — B)a” = (3:,00Do(8:) — Do(6.), B)a”

= (Do(62902) — Do(02)06, — Do(d,), B)a*

(Do(04402), B)a" — (Do(0s, ), B)a”" — ps(x)a”

= {pg,wor)a” — (Do(dy, ), B)(1, x)a” — pg(x)a’

= fa(zox) — (Do(0a,), B) folz) — fa(),
then (0,,0\ — AOd,,, 5) = —(D_0(5x0),ﬁl It follows that Dy(6,,) =
0zoLNg — A6y, where A\g = —A. Thus Dy is inner. O

Theorem 2.3. Let G be a locally compact group. Then the following
statements are equivalent:

(i) G is amenable.
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(ii) For every unital separable Banach algebra A, there exists a
bounded net {a}acr € LY (G, A) such that |0, * Ve — Ualli — 0
whenever x € G.

(iii) For every unital separable Banach algebra A, there exists a
bounded net {y}acr € L' (G, A) such that for every compact
set K C G, ||¢*va — Yallt — 0 uniformly for all ¢ € LY(G, A)

with fG\K [4(t)||dm(t) = 0.

Proof. Consider A = C. Then Theorem 6.7 in [10] yields (i1) = (i),
(idi) = (i).

(1) = (i1) Suppose that G is amenable. Let m be a left invariant
mean on L>®(G), and M be an induced mean on L*(G, A*). Choose
a € A such that, |la|| = 1. Define (I'y, f) = (M(f),a) for each f €
L>(G, A*). Regards I', as an element of L>(G, A*)*. The rest of the
proof is essentially the same as the Lemma 6.3 in [10].

(1) = (4i7) This is just a re-statement of Proposition 6.7 in [10]. O

Let {ea}o be a bounded approximate identity for L'(G) and e be
an identity in A. By Proposition 8.1 in [1], {e, ® €4}, is a bounded
approximate identity for L!'(G)®A where @ denotes the completion of
usual tensor product of Banach spaces with respect to the projective
tensor norm. We consider {e, ® €4}, as an element in (L*(G)®A)**
and F € (LY(G)®A)*. Using exactly the same notation as in [0], we
put ((eq ® €a), F) = [ Fd(e, ® ea). Given a dual Banach space X*
and F € B(L*(G), A; X*), we define [ Fd(e, ® €4) € X* by

( / Fd(ea ® ca), ) = / (F(f, ), 2)d(ca ® )/ a),
where f € L}Y(G), a€ Aand x € X.

Theorem 2.4. Let G be a locally compact group and let A be a uni-
tal separable Banach algebra. Then L'(G,A) is approzimately weakly
amenable.

Proof. Let D : LY (G,A) — LYG,A)" be a continuous derivation.
It is well-known that the space L'(G, A) is isometrically isomorphic
to L'(G)®A. Therefore we define F : LY(G) x A — LY (G, A)" by
F(f,a) = D(f ® a). Put, go = [ F(f,a)d(eq ® ea)(f,a). We know
that LY(G,A)" = L>(G, A*). Then for each F(f,a) € LYG,A),
its image under isometry onto L>®(G, A*) is a map whose values at
v € Gis F(f,a)(r) = (D(f ® a),r). We put F, : L}(G) x A —
A* with F,(f,a) = F(f,a)(x), f € L}G), a € A, and z € G.
Note that F, € B(L'(G), A; A*). By the above argument, we define
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[F.(f,a)d(eq ®ea)(f,a) € A* by

( / Fo(f.a)d(eaten)(f,a), ¢) = / Folf, a). )d(eaen)(f, a), (c € A).

The map = — go(z) = [ F(f,a)(z)d(eq ® ea)(f,a) is a scalarwise
measurable function, and Neoo(||ga(x )||) < oo for each a. Then, by
Theorem 8 18.2 in [ ] there is a map k,, in B(A, L>(G)) such that,
(Ky, (a = [ f(z) ,a)dm(z) for each f € LY(@), and a € A,
Where /iga is defined by /iga( ) = {(ga(x),a).

Using the same notation as in [0], we have e, ® e4 = [ f ® gd(e, ®
ea)(f,g). Moreover, e, ® e is a bounded approximate identity for
LYG)®A. Therefore, for each F : L}(G) x A — LYG,A), f, g €
LY (@), and a, b € A, we have

hén/F(fg,ab)d(ea@eA)(f, a) = 1i£n</ (fg @ ab)d(eq @ ea)(f, ), F)
— tmn( [ (af  ba)d(co © c.)(f,0). F)
= hgl/F(gf, ba)d(eq @ ea)(f,a).

Hence

lim(g ® b)(f. . (4)
— nm/f' ((9 ®b).ga(x), a)dm(x)
— tim [ fo){ [ (99 0).D(f ® 0)@)dlea ® e)(f,0). dhdm(z)
_ hin/fx /Dgf@ba 2)d(ea @ ea)(f,a), d)dm(z)
- lm / f(2) / D(g @ b).(f © a)(@)d(eq ® ea)(f, a), d)dm(x)
_ / ) i / (9, ba)(@)d(ea ® €4)(f, a), d)dm(x)
- [ f@imDg o) [ (79 a)@de. o ea)f.a),ddna)
= [ fwyimg / (f9,ab) ()d(ea © ea)(f, a), A)dm(z)
- / f(@)(D(g @ b)(x), d)dm(x)
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= [ fa)tin [ P(7.0)@)d(en s ea) (). d)dm(z)(g 9b)
- [ f@Dlg @ b)), ddm(z)

= i ) 0a(o),i)im(e) o @) [ f2)(Dlo @ b)), dham(a)

= lim(f, g, (d))(g @ b) — (. kp(gen) (@)
forall g be L'(G)® A, ¢ € Aand f e L'(G, A). Consequently,

lim((g @ b)#g, (4) = kg, (4)(g @ D)) = —Kp(gen)(d)

lim((g ®0).ga(w),d) = (ga(z).(9 @ b),d) = —(D(g@b)(z),a)

forallg@b e L'(G) ® A and d € A. Tt follows that
D(g®b) = liorln((g ®Db).go — Gu-(g @ D))

for all g@ b € L'(G) ® A, where ¢, = —ga. O

It is known that G is amenable if and only if LUC(G) has a left
invariant mean. It is interesting to have a direct proof of this fact. We
present a vector version of this characterization.

Theorem 2.5. Let G be a locally compact group, and let A be a unital
separable Banach algebra. Then:

(i) L=(G, ALY (G, A) = LUC(G, A*).

(ii) G is amenable if and only if LUC(G, A*) has a left invariant

mean.

Proof. (i) Let f € LUC(G, A*). Let {U,} be a net of neighborhoods
of e directed downwards. Let {v,}aesr be an approximate identity of
norm 1 in L'(G, A) such that suppr, C U,. Given € > 0, there exists
ap € I such that for each & > oy and y € U, , Noo(||fy — fl]) < e
Then

|<f‘Va>:u> - <f7/1l>‘
= |(f,vax ) — (f, 1)

= | [ s popdmin) ~ [0yt
= | [ [ nt tdvate)ame) ~ [ 50, u®)dmie)

= | [t [ uavasam® - [ (s@)ntenamo)
< Naollfy — Sl
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On the other hand, f.v, € L®(G, A*)LY(G, A), and L>(G, A*) L (G, A)
is a Banach space. It follows that f € L>°(G, A*)L'(G, A). Tt is easy to
see that L°(G, A*) LY(G, A) C LUC(G, A*), and so L=(G, A*) L' (G, A)
= LUC(G, A*).

(22) This follows from (7) and the proof of Lemma 3.2 in [9]. O

Let A be a Banach algebra. Recall that a functional f € A* for which
{f.a: |la]] <1, a € A} is relatively compact in the weak-topology
of A* is said to be weakly almost periodic. The set of weakly almost
periodic functionals on A is denoted by WAP(A) (see [3]). It is known
that WAP(G) = WAP(L'(G)) [13]. Note that for f € L*(G, A*) and
pne M(G, A), we define (fu,v) = (f,uxv) for every v € L' (G, A).

Theorem 2.6. Let G be a locally compact group, and A be a unital
separable Banach algebra. Then:

(i) If f € L>™(G,A*), then f € WAP(L' (G, A)) if and only if
{fd.: x € G} is relatively weakly compact in L>*(G, A*).
(i) WAP(L'(G, A)) = WAP(G, A*).
(iii) WAP(LY(G, A)) has a left invariant mean.

Proof. (i) Let f € WAP(LY(G, A)). Tt is known that Cy(G,A)* =
M(G, A*) [2]. Now consider 6, € M(G,A*). By the Hhan Banach
Theorem, we may assume that m € L>®(G, A*)* is an extension of 4,
with norm one. Then there is a net {iy taes in LG, A) with ||pa| <
1 such that p, — m in the weak*-topology. Hence, for every ¢ €
LY(G, A),

(0-f: tra) = (¢-f,m).

Since {f.u : |u|| < 1,u € LYG,A)} is relatively weakly compact,
then there is an element g € L*(G,A*) and a subnet {ug}per of
{lta }aer such that f.usg — ¢ in the weak-topology. On the other
hand, (m,¢.f) = (0;,0.f) = (fo., ¢), and so g = fd,. Thus the
set {fo, : x € G} is contained in {f.u: ||ul] <1,ue LY G, A)},
where closure is taken in the weak-topology, and the compactness of
{fé,: x € G} follows from the compactness of {f.u: |lu| < 1}.

Conversely, suppose that f € L*(G,A*) and p € LY (G, A) with
||l < 1, and {fd, : = € G} is relatively weakly compact. By the
Krein-Smulian Theorem, co{ fd, : = € G} is relatively weakly compact.
We claim that

fueco{fo,: v e G},

where closure is taken in the weak-topology. We assume to the contrary
that fu is not in co{fd,: x € G}. By the Hahn Banach Theorem,
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there exists F' € L>*(G, A*)*, such that
Re|(F, fu)] = > 72 > Re[(F, fda)],

where 71, 72 € R, and z € G. By Theorem 8.14.8 in [5], the inte-
gral [ fo,du belongs to L*>°(G, A*). Moreover, for any v € L'(G, A),

<ff5md,u,l/> = f<f-5xay>d,u = f<f753:*V>dﬂ = (fipxv) = (fuv)
(see Chapter 3 in [11]). By Theorem 3.28 in [I 1], we have

(Pt = | [(F. 180l < [ [ 151dnl(x) < Re(F. fi).

This is a contradiction, and so {f.u : ||pl] < 1,u € LY G, A)} is
contained in the closure of co{fd, : =z € G}, and the compact-

ness of {f.p: ||p]| < 1,u € LY(G, A)} follows from the compactness of
co{fd,: x € G}. Consequently, f € WAP(L'(G, A)), and the proof
is complete.

(i1) Let f € WAP(G,A*). Then the set {L,.f : v € G} is rela-
tively weakly compact in C(G, A*). Note that for each x € G, we
have (f0,.p) = (f, 0, i) = [(F(8), [ iy~ ), (0))dm(t) = (Lo ).
Then, by the Eberlien-Smulian Theorem, {fd, : x € G} is relatively
weakly compact in L>(G, A*), and from (i), f € WAP(L'(G, A)).

Conversely, let f € WAP(L'(G,A)). The map x +— fd, is contin-
uous with respect to the weak*-topology. From (i), {fd, : © € G}
is relatively weakly compact. Then x — fd, is continuous with re-
spect to the weak-topology. Now, let {U,} be a net of neighborhood
of e directed downwards. Let {v4}acs be an approximate identity of
norm 1 in L'(G, A) such that suppr, C U,. Given € > 0 and F €
L*>(G, A*)*, there exists an «q such that for each o > ag and = € U,,
[(F, fo,)—(F, f)| <€, and so | [(F, fo,)dv,—(F, f)| < e. By Theorem
8.14.8 in [5] and the Krein-Smulian Theorem, [ fd,dv, € L=(G, A*).
Moreover, for any p € LY(G, A), ([ férdva(z), ) = (fVa, ). There-
fore, for each o > «ay,

(P fva) = (F.D = F, [ foudva(o)) ~ (F. 1)
= |/<F7féz>dya - <F,f>‘ < €.

So fv, — f in the weak-topology. An argument similar to that in
the proof of Lemma 6.3 in [10] shows that we can find a bounded net
{Va }aer consisting of convex combination of elements in {v,}.c; such
that fr, — f in the norm topology. In addition, L>(G, A*)L'(G, A)
is a Banach space. Then from Theorem 2.5, f € C(G,A*). Since
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{fd. : = € G} is relatively weakly compact, then by the Eberlian-
Smulian Theorem, {L,f : x € G} is relatively weakly compact in
C(G, A*). Hence, f € WAP(G, A*).

(i73) It is an immediate consequence of Theorem 4.3 in [I11] and
(i). O

In the next theorem, we present an interesting property about a left
invariant mean when considered on Cy(G, A*). Analogous to the scalar
function case, we can easily obtain the following theorem.

Theorem 2.7. Let G be a non-compact amenable group and let f €
Co(G, A*). If M 1is left invariant mean on L>°(G, A*), then |M(f)| = 0.

Proof. Let M be a left invariant mean on L>*(G, A*) and f € L>®(G, A*).
Then the set {f(t) : || f(¢)]] < ||flleo} is weak*-closed in A* and M (f) €
{f(z) : = € G}, where closure is taken in the weak*-topology. It fol-
lows that |M(f)| < || f]lc- Using the Urysohn Lemma, it is easy to see

that Cyo(G, A*)”'H = Cy(G, A*). Then it is enough to prove that the re-
sult in the case where f € Cyo(G, A*). Let K = suppf. There exists an
infinite sequence {a, }nen in G such that ay = e, and (a;,K) (e, K) =

0, whenever i, j € N,i # j [10]. Put g, = X7 (L4, f (n € N) . For any
n e N,
[M(gn)| = InM(f)] < llgnlloc = l[lloc-
Consequently, M(f) = 0. O]
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