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IDEALS IN EL-SEMIHYPERGROUPS ASSOCIATED TO
ORDERED SEMIGROUPS

S. H. GHAZAVI, S. M. ANVARIYEH∗ AND S. MIRVAKILI

Abstract. In this work, we attempt to investigate the connection
between various types of ideals (for examples (m,n)-ideal, bi-ideal,
interior-ideal, quasi-ideal, prime-ideal and maximal-ideal) of an or-
dered semigroup (S, ·,≤) and the corresponding, hyperideals of its
EL-hyperstructure (S, ∗) (if exists). Moreover, we construct the
class of EL-Γ-semihypergroup, associated to a partially-ordered Γ-
semigroup.

1. Introduction

The application of mathematics in other branches of science plays a
vital role and they represent, in the recent decades, one of the purposes
of the study of the expert of hyperstructure theory all over the world.
The hyperstructure theory was first introduced in 1934 by the French
mathematician Marty [11]. He, at the 8th Congress of Scandinavian
Mathematicians, defined hypergroups as a natural generalization of
groups based on the notion of hyperoperation. Since then, a number
of different hyperstructures have been widely studied by many mathe-
maticians. A recent book on hyperstructures [4] has pointed out their
applications to fuzzy and rough set theory, cryptography, codes, au-
tomata, probability, geometry, lattices, binary relations, graphs and
hypergraphs.

EL-hyperstructures, which was first introduced by Chvalina in [3],
are hypercompositional structures constructed, from a partially/quasi
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(semi)group using a construction known as Ending lemma or Ends
lemma. Lots of papers regarding this topic have been written like
Hoskova [9, 10], Novak [12, 13, 14, 15, 16, 17], Rackova [18, 19], and
Rosenberg [20] and others. Among them, Novak in [14] studied sub-
hyperstructures of EL-hyperstructures and in [12], he discussed some
interesting results of important elements, in this family of hyperstruc-
tures. Then, in [13], Novak studied some basic properties of EL-
hyperstructures like invertibility, normality, property of being closed,
and ultra closed, regularity and etc. Also Rackova gave a description of
subhyprgroups of EL-hypergroups derived from a quasi-ordered group
[18]. In addition, after the Ends lemma extension by Rackova in [19](
Theorem 4), there is a natural question that ”Is it possible to go further
to stronger hyperstructure-like canonical hypergroups, strongly canon-
ical hypergroups and etc”. A positive answer to this question would
mean that various ring-like EL-hyperstructures could be studied exten-
sively. Using the Ends lemma construction, Novak in [15], considered
the potential of the Ends lemma to create ring-like hyperstructures
and in [17], constructed the n-ary hyperstructures from binary quasi-
ordered semigroups. Even though EL-hyperstructures have been widely
used and studied, the ideals of EL-hyperstructures have not been stud-
ied and investigated yet. This work aims at studying the various kinds
of ideals in a quasi-ordered semigroup and its EL-(semi)hypergroup.
More precisely, we wish to see which property, being bi-ideal, interior-
ideal, quasi-ideal and etc, of a given ideal of an ordered semigroup can
be herited by hyperideals of the associated EL-hyperstructure.

2. Preliminaries

In this part, we recall some basic definitions and properties that we
will consider later.

Definition 2.1. A hypergroupoid or a multigroupoid is a pair (H, ◦),
where H is a non-empty set, and ◦ : H ×H −→ ℘∗(H) is a binary hy-
peroperation also called a multioperation. (℘∗(H) is the system of all
non-empty subsets of H.) A semihypergroup is an associative hyper-
grupoid, i.e. a hypergrupoid satisfying the equality a◦(b◦c) = (a◦b)◦c
for every triad a, b, c ∈ H. If moreover, the semihypergroup H satisfies
a◦H = H = H◦a, for all a ∈ H, it is called a hypergroup. A non-empty
subset G ⊆ H is called a subhypergroup of (H, ◦), if a ◦G = G = G ◦ a
for all a ∈ H.

In the above definition, if A an B are two non-empty subsets of H
and x ∈ H, then x◦A = {x}◦A, A◦x = A◦{x} and A◦B =

∪
a∈A,b∈B

a◦b.
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For a deeper insight into the basic hyperstructure theory (cf [4] and [5]).
Since the theory of ordered structures is dealt with ordered relations,

we need to recall some definitions in this respect.

Definition 2.2. Binary relation ≤ is called quasi-order if it is reflexive
and transitive. Also, if the binary relation ≤ is reflexive, transitive and
anti-symmetric, then it is known as a partially-order relation.

Definition 2.3. By a partially/quasi-ordered (semi)group, we mean a
triple (S, ·,≤), where (S, ·) is a (semi)group, and ≤ is a partially/quasi
order relation on S such that for all x, y, z ∈ S with the property x ≤ y,
there holds (x · z) ≤ (y · z) and (z · x) ≤ (z · y). The element 0 ∈ S is
called zero element if 0 ≤ x, and 0 · x = x · 0 = 0 for all x ∈ S.

Moreover, the notation [x)≤, used below stands for the set {s ∈
S;x ≤ s} and also [A)≤ =

∪
x∈A

[x)≤. Similarly, (x]≤ = {s ∈ S; s ≤ x}

and (A]≤ =
∪
x∈A

(x]≤. A non-empty subset A of S is called an upper end

of S if for all a ∈ A, there holds [a)≤ ⊆ A. If there exists an element
a ∈ A such that there exists x ∈ S \A such that x ∈ [a)≤, we say that
A is not an upper end of S because of the element x.

Definition 2.4. Let (S, ·,≤) be a quasi-ordered semigroup, and ∅ ̸=
I ⊆ S. Then,
a) I is called a left (resp. right) ideal of S if S · I ⊆ I (I · S ⊆ I).
b) I is called a left (resp. right) ordered ideal of S if it is a left (resp.
right) ideal of S, and in addition, a ∈ I and b ≤ a imply that b ∈ I(i.e.
(I]≤ = I).
c) I is called an (ordered) ideal of S if it is both a left and right (ordered)
ideal of S.
d) I is called a (an ordered) bi-ideal of S if I ·S · I ⊆ I (and (I]≤ = I).
A bi-ideal I of S is called a (an ordered) subidempotent of S if I ·I ⊆ I
(and (I]≤ = I).
e) I is called an (ordered) interior-ideal of S if S · I · S ⊆ I (and
(I]≤ = I).
f) I is called a (an ordered) (m,n)-ideal of S if Im · S · In ⊆ I (and
(I]≤ = I).
g) I is called a (an ordered) quasi-ideal of S if S · I

∩
I · S ⊆ I (and

(I]≤ = I).
h) An ideal P of semigroup S is called prime if I · J ⊆ P implies that
I ⊆ P or J ⊆ P . P is called an ordered prime ideal of S if it is prime
and (P ]≤ = P .
i) An ideal P of semigroup S is called semiprime if I · I ⊆ P implies
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that I ⊆ P for all ideal I ⊆ S or equivalently x2 ∈ P implies that
x ∈ P for all x ∈ S. P is called an ordered semiprime ideal of S if it is
semiprime and (P ]≤ = P .
j) The semigroup S is called simple if it has no proper ideal i.e. aS =
Sa = S for all a ∈ S.
k) The semigroup S is called 0-simple if it has zero element, and, in
addition, 0 is the only proper ideal of S.
l) The semigroup S is called an idempotent semigroup or a band if
E(S) = S, in which E(S) is the set of all idempotent of S (i.e. x = x2

for all x ∈ S).

The EL–hyperstructures or Ends lemma based hyperstructures are
hyperstructures constructed from quasi/partially-ordered (semi)groups
using ”Ends lemma”. This concept was first introduced by Chvalina
in 1995 [3]. In particular, Chvalina proved that:

Lemma 2.5. ([3], Theorem 1.3) Let (S, ·,≤) be a partially-ordered
semigroup. Binary hyperoperation ◦ : S × S −→ ℘∗(S), defined by
a ◦ b = [a · b)≤ = {x ∈ S, a · b ≤ x}, is associative. The semihypergroup
(S, ◦) is commutative if and only if the semigroup (S, ·) is commutative.

Theorem 2.6. ([3], Theorem 1.4) Let (S, ·,≤) be a partially-ordered
semigroup. The following conditions are equivalent:
I) For any pair (a, b) ∈ S2, there exists a pair (c, c1) ∈ S2 such that
b · c ≤ a and c1 · b ≤ a.
II) The associated semihypergroup (S, ◦) is a hypergroup.

The following Theorem, which was proved by Rackova in her Ph.D
thesis, extends the Ends lemma. The proof can also be found in [18].

Theorem 2.7. ([18], Theorem 4) Let (S, ·,≤) be a quasi-ordered group,
and (S, ∗) be the associated EL-hyperstructure. Then, (S, ∗) is a trans-
position hypergroup.

3. (Hyper)Ideals

In this section, we introduce different types of hyperideals, and then
try to discover the relation between the ideals of an ordered semigroup
and the hyperideals of its associated EL-hyperstructure.

Definition 3.1. Let (H, ◦) be a semihypergroup. A non-empty subset
I of H is called a left (resp. right) hyperideal of H if H ◦ I ⊆ I
(I ◦H ⊆ I). A non-empty subset I of H is called a hyperideal of H if
it is both a left and right hyperideal of H.
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Example 3.2. Let S = [0, 1]. Then, S with the hyperoperation x◦y =
[1, xy] is a semihypergroup. Suppose I = [0, t] for t ∈ [0, 1]. It is easy
to see that I is a hyperideal of semihypergroup (S, ◦).

Theorem 3.3. Let (S, ·,≤) be a quasi-ordered semigroup, (S, ∗) be
its associated EL-hyperstructure, and I be a left (ordered) ideal of S,
which is also an upper end of S. Then I is a left hyperideal of (S, ∗).
A similar statement holds for right (ordered) ideals.

Proof. Suppose I is a left (ordered) ideal of (S, ·,≤). We have S ∗ I =∪
x∈S,y∈I

x ∗ y =
∪

x∈S,y∈I

[x · y)≤. Now for all (x, y) ∈ S × I there holds

x · y ∈ I since I is a left ideal of S. Also, [x · y)≤ ⊆ I because I is an
upper end of S. Therefore, S ∗ I ⊆ I. □

Example 3.4. Let S = {a,b,c,d,f} be an ordered semigroup with the
following multiplication table:

· a b c d f
a a b c b b
b b b b b b
c a b c b b
d d b d b b
f f f f f f .

We define the order relation ≤ as follows:

≤:= {(a, c), (f, b), (f, d), (a, a), (b, b), (c, c), (d, d), (f, f)}.

By a simple computation, we can obtain the semihypergroup (S, ∗)
with using the following table:

∗ a b c d f
a {a,c} b c b b
b b b b b b
c {a,c} b c b b
d d b d b b
f {b,d,f} {b,d,f} {b,d,f} {b,d, f} {b,d,f}

Now consider I = {f, b, d} and J = {b, c, d, f}. It is easy to see
that I is an ordered right ideal, and J is an ordinary (not ordered) left
ideal of (S, ·,≤). Also both of them are the upper ends of S. A simple
computation shows that I ∗ S ⊆ I and S ∗ J ⊆ J , which means that I
is a right hyperideal and J is a left hyperideal of (S, ∗).
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Corollary 3.5. Let (S, ·,≤) be a quasi-ordered semigroup, (S, ∗) be its
associated EL-hyperstructure, and I be an (ordered) ideal of S, which
is also an upper end of S. Then, I is a hyperideal of (S, ∗).

Remark 3.6. In Theorem 3.3, the condition of being an upper end of
S is an essential condition. Consider the following example.

Example 3.7. Let N0 = N
∪
{0}, and S = M2(N0). Then S with a

usual matrix multiplication is a semigroup. Define the relation ≤ on
S as follows: for all A,B ∈ S and i, j ∈ {1, 2}, A ≤ B ⇐⇒ aij ≤ bij.
It is easy to check that (S, ·,≤) is a partially-ordered semigroup. In

addition, let I = {
[
a 0
b 0

]
|a, b ∈ N0} ⊆ S. I is a left-ordered ideal of

(S, ·,≤) (i.e. SI ⊆ I), which is not an upper end of S. We claim that
I can not be a left hyperideal of (S, ∗). Indeed, there holds:

S ∗ I =
∪

X∈S,Y ∈I

X ∗ Y =
∪

x,y,z,t,a,b∈N0

[

[
xa+ by 0
az + bt 0

]
)≤ = S.

Thus S ∗ I = S ⊈ I.

Remark 3.8. It is easy to see that a left (resp. right) hyperideal of
(S, ∗) is always an ordinary left (resp. right) ideal of (S, ·,≤) (We
shall prove later) but it is not necessarily an upper end of S. In the
next theorem, we show that if the quasi-ordered semigroup (S, ·,≤)
possesses an identity element, i.e. it becomes a quasi-ordered monoid,
then the converse of Theorem 3.3 would hold for ordinary ideals.

Theorem 3.9. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then I is a left (reps. right) ideal of
S, which is also an upper end of S if and only if I is a left (reps. right)
hyperideal of (S, ∗).

Proof. In order to prove ⇐=, we have to show that:
1) S · I ⊆ I (I · S ⊆ I);
2) the subset I of S is an upper end of S.

Let x ∈ S, and y ∈ I be arbitrary elements. Since the relation ≤ is
reflexive, there holds x · y ∈ [x · y)≤ = x ∗ y ⊆ S ∗ I ⊆ I which implies
that S · I ⊆ I. A similar verification shows that I · S ⊆ I.

Now suppose (by contradiction) that I is not an upper end of S.
Thus there exists x ∈ I such that [x)≤ ⊈ I. Now for the identity
element e ∈ S there holds e ∗ x = [e · x)≤ = [x)≤ ⊈ I, which implies
that S ∗ I ⊈ I, a contradiction.

□
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Example 3.10. Let S = (N−{1},+,≤) with usual sum and ordering
of numbers. It is clear that S has no identity element. Also let I =
{6, 8, 9, 10, 11, 12, · · · } ⊂ S. Then using the Ends lemma construction,
we can see that in the associated EL-hyperstructure (S,⊕), there holds
I ⊕ S = S ⊕ I = {8, 10, 11, 12, · · · } ⊂ I, which means that I is a
hyperideal of (S,⊕). In addition, I + S ⊆ I ⊕ S ⊂ I and S + I ⊆
S ⊕ I ⊂ I. This implies that I is an ideal of (S,+,≤). But, I is not
an upper end of S because of element 7, Since 7 ∈ [6)≤ but 7 /∈ I.

Definition 3.11. ([6], p.177) Let (H, ◦) be a semihypergroup. Then
(H, ◦) is called simple if it has no proper hyperideal (i.e. H ◦x◦H = H
for all x ∈ H).

Theorem 3.12. Let (S, ·,≤) be a quasi-ordered semigroup in which
(S, ·) is simple. Then the associated EL-semihypergroup (H, ◦) is sim-
ple.

Proof. Let I be an arbitrary hyperideal of (S, ◦). As mentioned in
Remark 3.8, I can be regarded as an ideal of semigroup, (S, ·) which
implies that I = S due to simplicity of (S, ·). □

Remark 3.13. The converse of Theorem 3.12 is not true, i.e. there
is non-simple ordered semigroup (S, ·,≤) such that its associated EL-
semihypergroup (H, ◦) is simple. Look at the following example:

Example 3.14. ([2], Table 11) Let S = {a,b,c} be an ordered semi-
group with the following multiplication table:

· a b c
a a a a
b a b a
c a c a

We define the order relation ≤ as follows:

≤:= {(a, a), (a, b), (a, c), (b, b), (c, c)}.
Consider I = {a}, for which, there holds a · S = S · a = a. Thus (S, ·)
is not simple. By a simple computation, we can achieve the semihy-
pergroup (S, ∗) using the following table:

∗ a b c
a S S S
b S {b} S
c S {c} S
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It can be easily checked that (S, ∗) has no proper hyperidead. Notice
that x ∗ S = S ∗ x = S for all x ∈ S.

Definition 3.15. ([6], p.177) Let (H, ∗) be a semihypergroup. An
element 0 ∈ H is called left zero scalar element (resp. right zero scalar
element) if for all x ∈ H, there holds 0 ∗ x = 0 (resp. x ∗ 0 = 0). If 0
is both left and right zero scalar element, then 0 is called zero scalar
element.

Definition 3.16. ([6], p.177) A semihypergroup (H, ∗) with zero scalar
element is called 0-simple if H ∗ x ∗ H = H for all x ∈ H − {0}. (It
has no proper nontrivial ideal).

Theorem 3.17. Let (S, ·,≤), be a non-trivial quasi-ordered semigroup
with zero element. Then,
1) The associated EL-semihypergroup (S, ∗) is a hypergroup. i.e. (S, ∗)
is a simple semihypergroup.
2) (S, ∗) does not have zero scalar element, i.e. (S, ∗) is not 0-simple
semihypergroup.

Proof. 1) There exists an element 0 ∈ S such that 0 ≤ x, and 0 · x =
x · 0 = 0 for all x ∈ S. We have, 0 ∗ x = [0 · x)≤ = [0)≤ = S and

0 ∗S =
∪
x∈S

0 ∗x = S. Now, for an arbitrary element s ∈ S, there holds

s ∗ S = s ∗ (0 ∗ S) = (s ∗ 0) ∗ S = S ∗ S = S. Similarly, we can see that
S = S ∗ s for all s ∈ S.
2) Suppose that x ∈ S is the zero scalar element of (S, ∗). Thus
x ∗ s = x = s ∗ x for all s ∈ S. Now, for the zero element 0 ∈ (S, ·,≤),
we have 0 = x ∗ 0 = [x · 0)≤ = [0)≤ = S, which is impossible. □
Definition 3.18. Let (H, ◦) be a semihypergroup. A non-empty subset
I of H is called a left (resp. right) maximal hyperideal of H if there is
no proper left (resp. right) hyperideal J such that I ⊂ J ⊂ S.

Theorem 3.19. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then, I is maximal among all left
(reps. right) ideals of S, which are also an upper end of S if and only
if I is maximal among all left (reps. right) hyperideals of (S, ∗).

Proof. We prove just the necessity part. The proof of sufficiency part
is similar. Suppose J is a left (resp. right) hyperideal of (S, ∗) such
that I ⊂ J ⊆ S. Then, J is a left (resp. right) ideal of (S, ·,≤), which
is also an upper end of S by Theorem 3.9. Now, the maximality of I
implies that J = S.

□
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Example 3.20. Let I = {f, b, d} in Example 3.4. It can be easily be
checked that I is a maximal right ideal of (S, ·,≤). Now, by Theorem
3.19, it is a maximal right hyperideal of (S, ∗).

Theorem 3.21. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then, I is minimal among all left
(reps. right) ideals of S, which are also an upper end of S if and only
if I is minimal among all left (reps. right) hyperideals of (S, ∗).

Proof. The proof is similar to the proof of Theorem 3.19. □
Remark 3.22. Notice that the necessity parts of Theorem 3.9, Theorem
3.19 and Theorem 3.21 are not true for the ordered ideals of (S, ·,≤).
Actually, for the ordered ideals of (S, ·,≤), there holds:

Theorem 3.23. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then I is a left (reps. right) ordered
ideal of S, which is also an upper end of S if and only if I is a left
(reps. right) hyperideal of (S, ∗) with the property (I]≤ = I.

Theorem 3.24. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then I is maximal among all left
(reps. right) ordered ideals of S, which are also an upper end of S
if and only if I is maximal among all left (reps. right) hyperideals of
(S, ∗) with the property (I]≤ = I.

Theorem 3.25. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗)
be its associated EL-hyperstructure. Then I is minimal among all left
(reps. right) ideals (ordered ideals) of S, which are also an upper end
of S if and only if I is minimal among all left (reps. right) hyperideals
of (S, ∗) with the property (I]≤ = I.

Definition 3.26. A non-empty subset I of semihypergroup (H, ◦) is
called a bi-hyperideal of H if I ◦H ◦ I ⊆ I. A bi-hyperideal I of H is
called a subhyperidempotent of H if I ◦ I ⊆ I.

Theorem 3.27. Suppose (S, ∗) is the associated EL-hyperstructure of
a quasi-semigroup (S, ·,≤), and I is a (an ordered) bi-ideal of S, which
is also an upper end of S. Then,
1) I is a bi-hyperideal of (S, ∗).
2) If I is a subidempotent in (S, ·,≤) (i.e. I · I ⊆ I), then I is a
subhyperidempotent of (S, ∗) (i.e. I ∗ I ⊆ I).

Proof. 1) We have to show that I ∗ S ∗ I ⊆ I. Let x, y ∈ I, and z ∈ S.

Then x ∗ z ∗ y =
∪

t∈x∗z

t ∗ y =
∪

t∈[x·z)≤

[t · y)≤ . Now x · z ≤ t implies
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x · z · y ≤ t · y. As I is a bi-ideal of S, there holds x · z · y ∈ I and since
I is an upper end of S, we conclude that t · y ∈ I. This implies that
[t · y)≤ ⊆ I. Thus x ∗ z ∗ y ⊆ I for all (x, y) ∈ I2 and z ∈ S.
2)Let x, y be arbitrary elements in I. As I is subidempotent of S,
there holds x · y ∈ I and since I is an upper end of S, we have x ∗ y =
[x · y)≤ ⊆ I, which implies that I ∗ I ⊆ I. □

Example 3.28. Let S = {a,b,c,d,f} be an ordered semigroup with the
following multiplication table:

· a b c d f
a a b c d f
b b a c d f
c c c c c c
d c c c c c
f f f c d f.

We define the order relation ≤ as follows:

≤:= {(d, c), (f, b), (f, c), (f, a), (a, a), (b, b), (c, c), (d, d), (f, f)}.
Consider I = {c, d}. It is easy to see that I is an ordered bi-ideal
of (S, ·,≤), which is also an upper end of S (i.e. I · S · I ⊆ I and
[{d, c})≤ = {d, c}). Using the Ends lemma construction, one can
achieve the semihypergroup (S, ∗) using the following table:

∗ a b c d f
a a b c {d,c} {a,b,c,f}
b b a c {d,c} {a,b,c,f}
c c c c c c
d c c c c c
f {a,b,c,f} {a,b,c,f} c {d,c} {a,b,c,f}.

Now, a simple computation shows that I is a bi-hyperideal of (S, ∗).

Theorem 3.29. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then,
1) I is a (an ordered) bi-ideal of S, which is also an upper end of S if
and only if I is a bi-hyperideal of (S, ∗) (with the property (I]≤ = I).
2) I is a (an ordered) subidempotent of S, which is also an upper end
of S if and only if I is a subhyperidempotent of (S, ∗) (with the property
(I]≤ = I).

Proof. Regarding Theorem 3.9, Theorem 3.27, and the fact that a · b ∈
a ∗ b for all (a, b) ∈ S2, the statements can be easily proved. □
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Theorem 3.30. Suppose (S, ∗) is the associated EL-hyperstructure of
a quasi-semigroup (S, ·,≤), and I is an (ordered) interior ideal of S,
which is also an upper end of S. Then, I is an interior hyperideal of
(S, ∗).
Proof. The proof is similar to the proof of the first part of Theorem
3.27. □
Remark 3.31. Notice that, as mentioned in Remark 3.8, each interior
hyperideal of (S, ∗) is an interior ideal of (S, ·,≤) but it is not necessar-
ily an upper end of S. Also, an arbitrary interior hyperideal of (S, ∗)
is not always an ordered interior ideal of (S, ·,≤). Actually, it is easy
to see that:

Theorem 3.32. Let (S, ·,≤) be a quasi-ordered monoid, and (S, ∗) be
its associated EL-hyperstructure. Then I is an (ordered) interior ideal
of S, which is also an upper end of S if and only if I is an interior
hyperideal of (S, ∗) (with the property (I]≤ = I).

Definition 3.33. Let (H, ◦) be a semihypergroup. A non-empty subset
I of H is called a (m,n)-hyperideal of H if Im ◦ S ◦ In ⊆ I.

Theorem 3.34. Suppose (S, ∗) is the associated EL-hyperstructure of a
quasi semigroup (S, ·,≤), and I is an (m,n)-ideal (ordered (m,n)-ideal)
of S, which is also an upper end of S. Then, I is an (m,n)-hyperideal
of (S, ∗).
Proof. Suppose x ∈ Im∗ ∗ S ∗ In∗ , in which Im∗ is equal to I ∗ I ∗ · · · ∗ I
(m times). There exit a ∈ Im∗ , s ∈ S, and b ∈ In∗ such that x ∈
a ∗ s ∗ b =

∪
t∈s∗b

a ∗ t =
∪

t∈[s·b)≤

[a · t)≤. Thus there exists t1 ∈ [s · b)≤

(i.e. s · b ≤ t1) such that x ∈ [a · t1)≤ (i.e. a · t1 ≤ x). Now, the
relation s · b ≤ t1 implies that a · s · b ≤ a · t1 ≤ x. On the other
hand, since a ∈ Im∗ and b ∈ In∗ , there exist (x1, x2, · · · , xm) ∈ Im and
(y1, y2, · · · , yn) ∈ In such that x1 · x2 · · · xm ≤ a and y1 · y2 · · · yn ≤ b.
This implies that x1 ·x2 · · · xm ·s·y1 ·y2 · · · yn ≤ a·s·b ≤ x, which implies
that x ∈ [x1 ·x2 · · · xm ·s·y1 ·y2 · · · yn)≤ where x1 ·x2 · · · xm ·s·y1 ·y2 · · · yn
is in Im · S · In ⊆ I. Finally, since I is an upper end of S, there holds
[x1 · x2 · · · xm · s · y1 · y2 · · · yn)≤ ⊆ I, and consequently, x ∈ I. □

In the next two examples, we show that quasi-ideals of an ordered
semigroup (S, ·,≤) would not be quasi-hyperideal of the associated EL-
hyperstructure (S, ∗).
Example 3.35. Consider the ordered semigroup (S, ·,≤) mentioned
in Example 3.14 and its associated EL-hyperstructure (S, ∗). Quasi-
ideals of S are: {a}, {a,b}, {a,c}, {a,d}, {a,f}, {a,b,d}, {a,c,d}, {a,b,f},
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{a,c,f}, and S (see [19]). Now, consider the quasi-ideal I = {a}. There
holds a ∗ S = S ∗ a = S, which implies that I ∗ S

∩
S ∗ I ⊈ I i.e.

I = {a} is not a quasi-hyperideal of S. A similar proof holds for other
quasi-ideals of S.

Example 3.36. Let N0 = N
∪
{0}, and S = M2(N0). Then S with a

usual matrix multiplication is a semigroup. Define the relation ≤ on
S as follows: for all A,B ∈ S and i, j ∈ {1, 2}, A ≤ B ⇐⇒ aij ≤ bij.
It is easy to check that (S, ·,≤) is a partially-ordered semigroup. In

addition, let I = {
[
a 0
0 0

]
|a ∈ N0} ⊆ S, which is an ordered quasi-

ideal of (S, ·,≤) (i.e. IS
∩
SI ⊆ I). We claim that I can not be a

quasi-hyperideal in (S, ∗). Indeed, there holds I ∗S =
∪

X∈I,Y ∈S

X ∗Y =

∪
x,a∈N0

[

[
xa 0
0 0

]
)≤ = S, and similarly, S∗I = S. So, I∗S

∩
S∗I = S ⊈ I.

Definition 3.37. Let (H, ◦) be a (semi)hypergroup, and P be a hy-
perideal of (H, ◦) . The hyperideal P is called semiprime if I ◦ I ⊆ P
implies that I ⊆ P for all hyperideal I of (H, ◦).

Example 3.38. Let S = {a,b,c} be the semihypergroup with the fol-
lowing table:

◦ a b c
a a a a
b a c a,b
c a a,b a,c

One can easily check that P = {a} is a semiprime hyperideal of (S, ◦).

Theorem 3.39. Suppose (S, ∗) is the associated EL-hyperstructure of
a quasi-semigroup (S, ·,≤), and P is a (an ordered) semiprime ideal of
S, which is also an upper end of S. Then P is a semiprime hyperideal
of (S, ∗) (with the property (P ]≤ = P ).

Proof. Suppose I is an arbitrary hyperideal of (S, ∗) with the property
I ∗ I ⊆ P . We have to show that I ⊆ P . Let x ∈ I. Then, x ∗ x ⊆
I ∗ I ⊆ P . On the other hand, by the reflexive property of order ≤,
x2 = x ·x ∈ [x ·x)≤ = x ∗x ⊆ P , which implies that x ∈ P . So, I ⊆ P ,
and finally, P is a semiprime hyperideal of (S, ∗). A similar proof
holds for ordered semiprime ideals of semigroup (S, ·,≤) and semiprime
hyperideal of semihypergroup (S, ∗) with the property (P ]≤ = P . □
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Definition 3.40. Let (H, ◦) be a (semi)hypergroup, and P be a hyper-
ideal of (H, ◦) . The hyperideal P is called prime if I ◦ J ⊆ P implies
that I ⊆ P or J ⊆ P for all hyperideal I and J of (H, ◦).

Example 3.41. Let S = (N,⊗), in which m ⊗ n = {kmn|k ∈ N} for
all (m,n) ∈ N2. Then, an easy verification shows that I = (2) is a
prime hyperideal.

Theorem 3.42. Suppose (S, ∗) is the associated EL-hyperstructure of
a quasi-semigroup (S, ·,≤), and P is a (an ordered) prime ideal of S,
which is also an upper end of S. Then, P is a prime hyperideal of
(S, ∗) (with the property (P ]≤ = P ).

Proof. At first, let P be an ordinary prime ideal of S. Suppose I1 and
I2 are two hyperideals of (S, ∗) such that I1 ∗ I2 ⊆ P . Now, by Remark
3.8, I1 and I2 are two ideals of semigroup S. On the other hand, there
holds I1 · I2 ⊆ I1 ∗ I2 ⊆ P , which implies that I1 ⊆ P or I2 ⊆ P .
A similar proof holds for ordered prime ideals of (S, ·,≤) and prime
hyperideals of (S, ∗) with the property (P ]≤ = P . □
Definition 3.43. Let (H, ◦) be a semihypergroup. An element x ∈ H
is called an idempotent if x ∈ x◦x. We denote the set of all idempotent
of H by E(H). In addition, we define the semihypergroup (H, ◦) as a
idempotent semihypergroup or a hyperband if E(H) = H.

Example 3.44. Let S = {a,b,c} be the semigroup with the following
multiplication table:

· a b c
a a a a
b a b a
c a a c.

We define the order relation ≤ as follows:

≤:= {(a, c), (a, b), (a, a), (b, b), (c, c)}.

It is not difficult to see that (S, ·,≤) is an ordered semigroup, in which
E(S) = S (i.e. each element is an idempotent). Using the Ends lemma
construction, one can achieve EL-hyperstructure (S, ∗) as follows:

* a b c
a S S S
b S {b} S
c S S {c}.
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As it can be seen, for all x ∈ S, there holds x ∈ x ∗ x. Thus E(S) = S
(i.e.(S, ∗) is a hyperband).

In the next Theorem, we show that the associated EL-hyperstructure
of an ordered band (an ordered semigroup in which each element is an
idempotent) is always a hyperband.

Theorem 3.45. Let (S, ·,≤) be a quasi-semigroup, and also a band and
(S, ∗) be its associated EL-hyperstructure. Then (S, ∗) is a hyperband.

Proof. Due to reflexivity of the relation ≤, for all x ∈ S, there holds
x ∈ [x)≤ = [x · x)≤ = x ∗ x, i.e. x is an idempotnet. □
Remark 3.46. The converse of Theorem 3.45 is not true. The following
example shows that the associated EL-semihypergroup of an ordered
semigroup (S, ·,≤) with the property E(S) ̸= S can be a hyperband.

Example 3.47. Let (S, ·,≤) be the ordered semigroup defined in Ex-
ample 5. It is clear that E(S) ̸= S, i.e. (S, ·) is not a band. However,
its associated EL-semihypergroup is a hyperband.

4. Ends lemma based Γ-semihypergroup

Now, we construct a Γ-semihypergroup from a partially-ordered Γ-
semigroup. At first, we recall some definitions and examples that can
be found in [8] and [22].

Definition 4.1. [1] Let S and Γ be two non-empty sets. Then S is
called a Γ-semigroup if there exists a map S × Γ × S −→ S, writ-
ten (x, γ, x) by xγy, satisfying the identities (aγb)δc = aγ(bδc) for all
(a, b, c) ∈ S3 and (γ, δ) ∈ Γ2.

Example 4.2. For a, b ∈ [0, 1], let M = [0, a], and Γ = [0, b]. Then M
is a Γ-semigroup under usual multiplication.

Example 4.3. Let S be an arbitrary semigroup, and Γ be any non-
empty set. For all (x, y) ∈ S2 and γ ∈ Γ, define aγb = ab. It can easily
be checked that S is a Γ-semigroup.Thus a semigroup can be regarded
as a Γ-semigroup.

Definition 4.4. A partially-ordered Γ-semigroup is a partially-ordered
set (S,≤), in which S is a Γ-semigroup, and the relation x ≤ y implies
that xγz ≤ yγz and zγx ≤ zγy for all (x, y, z) ∈ S3 and γ ∈ Γ.

Definition 4.5. Let S and Γ be two non-empty sets. Then, S is
called a Γ-semihypergroup if each γ ∈ Γ is a hyperoperation on S, i.e.,
xγy ⊆ S for all (x, y) ∈ S2, and for every (α, β) ∈ Γ2 and (x, y, z) ∈ S3

there holds xα(yβz) = (xαy)βz (associative property).
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Example 4.6. Let S be a non-empty, set and Γ be a non-empty subset
of S. Define xγy = {x, γ, y} for all x, y ∈ S and γ ∈ Γ. It is easy to
see that S is a Γ-semihypergroup.

Theorem 4.7. Suppose (S, ·,≤) is a partially-ordered Γ-semigroup.
Then, its EL-hyperstructure is a Γ-semihypergroup.

Proof. We must show that (1) every γ ∈ Γ is hyperoperation on S, and
(2) xα(yβz) = (xαy)βz for each (x, y, z) ∈ S3 and (α, β) ∈ Γ2.
(1) Let γ be an arbitrary element in Γ. For each (x, y) ∈ S2, define

xγy = [x · γ · y)≤ = {s ∈ S|x · γ · y ≤ s} ⊆ S.

Clearly, γ is a hyperoperation on S.

(2) To prove the associativity, we first show that
∪

s∈[x·α·y)≤

[s · β · z)≤ =∪
t∈[y·β·z)≤

[x · α · t)≤ for each (x, y, z) ∈ S3 and (α, β) ∈ Γ2. Let m ∈∪
t∈[y·β·z)≤

[x ·α · t)≤. There exists t0 ∈ [y ·β ·z)≤ such that m ∈ [x ·α · t0)≤

(i.e. x · α · t0 ≤ m). However, y · β · z ≤ t0 implies that x · α · y · β · z ≤
x · α · t0 ≤ m. Set x · α · y = s0 ∈ S. Then, due to reflexivity of ≤,
there holds x · α · y = s0 ∈ [s0)≤ and s0 · β · z ≤ m. This means that

m ∈ [s0 · β · z)≤ ⊆
∪

s∈[x·α·y)≤

[s · β · z)≤. Consequently, we have

∪
s∈[x·α·y)≤

[s · β · z)≤ ⊆
∪

t∈[y·β·z)≤

[x · α · t)≤.

With a similar proof, we can see ⊇. Finally,

(xαy)βz =
∪

s∈[x·α·y)≤

[s · β · z)≤ =
∪

t∈[y·β·z)≤

[x · α · t)≤ = xα(yβz).

□

5. Conclusions and future work

For almost all algebraic (hyper)structures, the set of sub(hyper)
structures (such as subspaces of a vector space, submodules of a mod-
ule, and ideals of semigroup or a ring and so on) plays a vital and im-
portant role in studying and classifying their based (hyper) structures.
In this work, we studied different hyperideals of an EL-semihypergroup
associated to a quasi-ordered semigroup. Also in the last section, we
extended the concept of EL- hyperstructures to EL-Γ-hyperstructures.

The generalization of End lemma and EL-hyperstructures can be
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carried out in different viewpoints. For example, Ghazavi et al, in [7],
started from a partially/quasi-ordered semihypergroup (instead of a
partially/quasi-ordered semigroup), and introduced EL2- hyperstruc-
tures, and investigated the similarities and differences between EL
and EL2-hyperstructures. Another idea to do this (extension of End
lemma) is to use ternary and n-ary relations instead of binary relations
in the primitive concept of Ends lemma, on which we are now working
on.
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مرتب نیم�گروه�های به وابسته ابر�نیم�گروه�های -EL در ایدآل�ها

وکیلی٢ میر سعید و انوریه١ محمد سید قاضوی١، حسین سید
تهران٢ نور پیام دانشگاه ریاضی دانشکده یزد١، دانشگاه ریاضی دانشکده

ایدآل�های همانند (S, ·,≤) مثل مرتب نیم�گروه یک ایدآل�های مختلف انواع بین رابطه مقاله دراین
-El در متناظر ایدآل�های ابر با را ... و شبه�ایدآل�ها (m,n)–ایدآل�ها، ماکسیمال، مینیمال، اول،
لم ساختار از استفاده با ادامه در می�کنیم. بررسی وجود) صورت (در (S, ∗) یعنی وابسته ابر�نیم�گروه

می�سازیم. مرتب Γ-نیم�گروه یک روی از را Γ-EL-ابرنیم�گروه�ها کلاس پایانی

مرتب نیم�گروه (m,n)–ایدآل، داخلی، ایدآل ایدآل، شبه پایانی، لم ابرساختارها، -El کلیدی: کلمات
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