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RESULTS ON ALMOST COHEN-MACAULAY
MODULES

A. MAFT* AND S. TABEJAMAAT

ABSTRACT. Let (R,m) be a commutative Noetherian local ring,
and M be a non-zero finitely-generated R-module. We show that if
R is almost Cohen-Macaulay and M is perfect with finite projective
dimension, then M is an almost Cohen-Macaulay module. Also,
we give some necessary and sufficient conditions on M to be an
almost Cohen-Macaulay module, by using Ext functors.

1. INTRODUCTION

We shall assume throughout this note that R is a commutative
Noetherian ring with non-zero identity, and M is a non-zero finitely-
generated R-module. The projective dimension of an R-module M is
denoted by pd M. The well-known notion, grade M, has been intro-
duced by Rees, in [9], as the least integer n > 0 such that Ext, (M, R) #
0. Foxby, in [3, Proposition 2.1(h)], defined the gradey M as the least
integer n > 0 such that Ext’, (M, N) # 0, where N is a non-zero finitely-
generated R-module. An R-module M is perfect if pd M = grade M,
see [1, Definition 1.4.15].

Han, in [1], and later Kang, in [0] and [7], defined that an R-module
M is almost Cohen-Macaulay (i.e. aCM) if grade(P, M) = depth Mp
for every P € Supp(M). Also, R is called an aCM ring if it is an aCM
module when it is regarded as a module over itself. In [6], Kang gave
some fundamental properties and some characterizations of aCM mod-
ules and in [7]. He gave some interesting examples of aCM modules.

MSC(2010): 13C14, 13H10, 13D07.
Keywords: Almost Cohen-Macaulay module, Perfect module, Ext functor.
Received: 5 August 2015, Revised: 14 November 2015.
xCorresponding author.
147



148 MAFI AND TABEJAMAAT

In [2], Chu et al., by using the first non-vanishing local cohomology
module, gave a necessary and sufficient condition for an R-module M
to be an aCM module. Also Ionescu, in [5], studied the behavior of
aCM rings with respect to flat morphisms.

In this work, we prove that if R is an aCM ring, and M is a perfect
module with finite projective dimension. Then M is an aCM mod-
ule. Also we examine the behavior of aCM moules with respect to flat
morphisms. Moreover, by using Ext functors, we give a necessary and
sufficient condition for an R module M to be an aCM module. For
basic definitions, we refer the reader to [1] or [3].

2. SOME BASIC RESULTS ON ACM MODULES

Lemma 2.1. Let (R,m) be a local ring, and M be an aCM R-module.
Then for any P € Ass(M), we have dim M — dim R/P < 1.

Proof. From [!, Proposition 1.2.13], we have depth M < dim R/P for
all P € Ass(M), and on the other hand, have dim R/P < dim M. Since
M is an aCM module, it, therefore, follows that dim M < depth M +1,
and this completes the proof. 0

Lemma 2.2. Let (R,m) be a local ring. If for any proper ideal a of R
and any P € Supp(M/aM) we have grade(a, M) = grade(aRp, Mp),
then M is aCM.

Proof. The proof is clear. 0

Theorem 2.3. Let (R, m) be a local ring, and M be an aCM R-module.
Then dim M — dim M /aM < grade(a, M) + 1 for all ideal a C m.

Proof. 1f grade(a, M) = 0, then there exists P € Ass(M) with a C P,
and, therefore, dim R/P < dim M/aM. Thus by using Lemma 2.1,
dim M — dim M/aM < 1. If grade(a, M) > 0, then there exists = € a,
which is regular on M. One has grade(a, M/zM) = grade(a, M)—1 and
dim M/xM = dim M — 1, so that induction completes the argument.

O

Corollary 2.4. Let (R,m) be a local ring, and M be an aCM R-
module. Then dim M —dim M /PM < dim Mp+1 for all P € Supp(M).

Proof. By Theorem 2.3, dim M —dim M /PM < grade(P, M )+1. Since
grade(P, M) < ht P = dim Mp, the inequality follows. OJ

The following result easily follows by Theorem 2.3.

Corollary 2.5. Let (R,m) be a local ring, and I be a proper ideal of
R. If R is aCM, then ht [ < dim R — dim R/I <ht I+ 1.
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The following theorem extends [10, 1.9].

Theorem 2.6. Let R be an aCM ring, and M be a perfect module with
finite projective dimension. Then M is an aCM module.

Proof. For any P € Supp(M), one has the inequalities grade M <
grade Mp < pd Mp < pd M. Therefore, if M is a perfect module, then
Mp is a perfect Rp-module. Thus, we may assume that R is a local
ring. The Auslander-Buchsbaum formula gives pd M + depth M =
depth R, and Corollary 2.5 yields grade M + dim M < dim R. Thus
dimM — depthM < dim R — depth R < 1, and so M is an aCM
module. O

The following result extends [5, Proposition 2.2].

Proposition 2.7. Let ¢ : (R,m) — (S,n) be a local homomorphism
of Noetherian local rings. Suppose M is a finitely-generated R-module,
and N is an R-flat finitely-generated S-module. If M @r N is an aCM
S-module, then M is an aCM R-module and N/mN is an aCM S-
module. Moreover, if the R-module M and the S-module N/mN are
aCM and one of them is CM, then the S-module M @r N is aCM.

Proof. By [l, Proposition 1.2.16(a) and Theorem A.11(b)] we have
dimg(M ®r N) = dimg M + dimg(N/mN) and depthg(M ®r N) =
depthy M + depthg(N/mN). Therefore, 0 < dimg(M ®g N) — depthg
(M®pN) =dimp M —depthy M +dimg(N/mN) —depthg(N/mN) <
1, and so dimr M —depthp M < 1 and dimg(N/mN)—depthg(N/mN) <
1. Thus M over R and N/mN over S are aCM. Moreover, the above
inequality yields the remainder. OJ

3. A ACM MODULES AND Ext FUNCTORS

Throughout this section, (R, m) is a CM local ring of dimension d,
and C' is a canonical module of R. Recall that a maximal Cohen-
Macaulay module C' of type 1 and of finite injective dimension is called
a canonical module of R.

Proposition 3.1. Let M be an aCM R-module with depth M = ¢. If
dim M —depth M = 1, then Ext,(M,C) # 0 only ifi =d —t,d —t — 1.

Proof. [3, Propositions 3.1(b)] yields that grade, M = grade M. Thus
[3, Proposition 1.2(g), (i)] implies that sup{i : Exty(M,C) # 0} = d—t
and inf{i : ExtZ(M,C) # 0} = d—t—1. This completes the proof. O
Theorem 3.2. Suppose that M is not a CM R-module. Then M is an

aCM module with depth M = t if and only if Extly(M,C) # 0 ezactly
wheni=d—t,d—1t—1.
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Proof. (=). This is obvious by Proposition 3.1.

(«<=). Since Ext% (M, C) # 0 and Exth(M,C) = 0 for all i > d —t,
by [3, Proposition 1.2(g)] we have depth M = ¢. Again, by [3, Proposi-
tions 1.2(h) and 3.1(b)] grade M = d — ¢t — 1, and so by [3, Proposition
1.2(i) | dim M = t 4 1. Therefore, M is an aC.M module. O
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