RESULTS ON ALMOST COHEN-MACAULAY MODULES

A. MAFI* AND S. TABEJAMAAT

ABSTRACT. Let (R, \underline{m}) be a commutative Noetherian local ring, and M be a non-zero finitely-generated R-module. We show that if R is almost Cohen-Macaulay and M is perfect with finite projective dimension, then M is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient conditions on M to be an almost Cohen-Macaulay module, by using Ext functors.

1. Introduction

We shall assume throughout this note that R is a commutative Noetherian ring with non-zero identity, and M is a non-zero finitely-generated R-module. The projective dimension of an R-module M is denoted by pd M. The well-known notion, grade M, has been introduced by Rees, in [9], as the least integer $n \geq 0$ such that $\operatorname{Ext}_R^n(M,R) \neq 0$. Foxby, in [3, Proposition 2.1(h)], defined the grade M as the least integer $n \geq 0$ such that $\operatorname{Ext}_R^n(M,N) \neq 0$, where N is a non-zero finitely-generated R-module. An R-module M is perfect if pd M = grade M, see [1, Definition 1.4.15].

Han, in [4], and later Kang, in [6] and [7], defined that an R-module M is almost Cohen-Macaulay (i.e. aCM) if $\operatorname{grade}(P, M) = \operatorname{depth} M_P$ for every $P \in \operatorname{Supp}(M)$. Also, R is called an aCM ring if it is an aCM module when it is regarded as a module over itself. In [6], Kang gave some fundamental properties and some characterizations of aCM modules and in [7]. He gave some interesting examples of aCM modules.

MSC(2010): 13C14, 13H10, 13D07.

Keywords: Almost Cohen-Macaulay module, Perfect module, Ext functor.

Received: 5 August 2015, Revised: 14 November 2015.

 $* Corresponding \ author.\\$

In [2], Chu et al., by using the first non-vanishing local cohomology module, gave a necessary and sufficient condition for an R-module M to be an aCM module. Also Ionescu, in [5], studied the behavior of aCM rings with respect to flat morphisms.

In this work, we prove that if R is an aCM ring, and M is a perfect module with finite projective dimension. Then M is an aCM module. Also we examine the behavior of aCM moules with respect to flat morphisms. Moreover, by using Ext functors, we give a necessary and sufficient condition for an R module M to be an aCM module. For basic definitions, we refer the reader to [1] or [8].

2. Some basic results on ACM modules

Lemma 2.1. Let (R, \underline{m}) be a local ring, and M be an aCM R-module. Then for any $P \in Ass(M)$, we have dim $M - \dim R/P \le 1$.

Proof. From [1, Proposition 1.2.13], we have depth $M \leq \dim R/P$ for all $P \in \operatorname{Ass}(M)$, and on the other hand, have $\dim R/P \leq \dim M$. Since M is an aCM module, it, therefore, follows that $\dim M \leq \operatorname{depth} M + 1$, and this completes the proof.

Lemma 2.2. Let (R, \underline{m}) be a local ring. If for any proper ideal \underline{a} of R and any $P \in \operatorname{Supp}(M/\underline{a}M)$ we have $\operatorname{grade}(\underline{a}, M) = \operatorname{grade}(\underline{a}R_P, M_P)$, then M is aCM.

Proof. The proof is clear.

Theorem 2.3. Let (R, \underline{m}) be a local ring, and M be an aCM R-module. Then dim $M - \dim M/\underline{a}M \leq \operatorname{grade}(\underline{a}, M) + 1$ for all ideal $\underline{a} \subseteq \underline{m}$.

Proof. If $\operatorname{grade}(\underline{a}, M) = 0$, then there exists $P \in \operatorname{Ass}(M)$ with $\underline{a} \subseteq P$, and, therefore, $\dim R/P \leq \dim M/\underline{a}M$. Thus by using Lemma 2.1, $\dim M - \dim M/\underline{a}M \leq 1$. If $\operatorname{grade}(\underline{a}, M) > 0$, then there exists $x \in \underline{a}$, which is regular on M. One has $\operatorname{grade}(\underline{a}, M/xM) = \operatorname{grade}(\underline{a}, M) - 1$ and $\dim M/xM = \dim M - 1$, so that induction completes the argument.

Corollary 2.4. Let (R, \underline{m}) be a local ring, and M be an aCM Rmodule. Then $\dim M - \dim M/PM \leq \dim M_P + 1$ for all $P \in \operatorname{Supp}(M)$.

Proof. By Theorem 2.3, dim $M - \dim M/PM \leq \operatorname{grade}(P, M) + 1$. Since $\operatorname{grade}(P, M) \leq \operatorname{ht} P = \dim M_P$, the inequality follows.

The following result easily follows by Theorem 2.3.

Corollary 2.5. Let (R, \underline{m}) be a local ring, and I be a proper ideal of R. If R is aCM, then ht $I \leq \dim R - \dim R/I \leq \operatorname{ht} I + 1$.

The following theorem extends [10, 1.9].

Theorem 2.6. Let R be an aCM ring, and M be a perfect module with finite projective dimension. Then M is an aCM module.

Proof. For any $P \in \operatorname{Supp}(M)$, one has the inequalities grade $M \leq \operatorname{grade} M_P \leq \operatorname{pd} M_P \leq \operatorname{pd} M$. Therefore, if M is a perfect module, then M_P is a perfect R_P -module. Thus, we may assume that R is a local ring. The Auslander-Buchsbaum formula gives $\operatorname{pd} M + \operatorname{depth} M = \operatorname{depth} R$, and Corollary 2.5 yields $\operatorname{grade} M + \operatorname{dim} M \leq \operatorname{dim} R$. Thus $\operatorname{dim} M - \operatorname{depth} M \leq \operatorname{dim} R - \operatorname{depth} R \leq 1$, and so M is an aCM module.

The following result extends [5, Proposition 2.2].

Proposition 2.7. Let $\varphi:(R,\underline{m}) \longrightarrow (S,\underline{n})$ be a local homomorphism of Noetherian local rings. Suppose M is a finitely-generated R-module, and N is an R-flat finitely-generated S-module. If $M \otimes_R N$ is an aCM S-module, then M is an aCM R-module and $N/\underline{m}N$ is an aCM S-module. Moreover, if the R-module M and the S-module $N/\underline{m}N$ are aCM and one of them is CM, then the S-module $M \otimes_R N$ is aCM.

Proof. By [1, Proposition 1.2.16(a) and Theorem A.11(b)] we have $\dim_S(M \otimes_R N) = \dim_R M + \dim_S(N/\underline{m}N)$ and $\operatorname{depth}_S(M \otimes_R N) = \operatorname{depth}_R M + \operatorname{depth}_S(N/\underline{m}N)$. Therefore, $0 \leq \dim_S(M \otimes_R N) - \operatorname{depth}_S(M \otimes_R N) = \dim_R M - \operatorname{depth}_R M + \dim_S(N/\underline{m}N) - \operatorname{depth}_S(N/\underline{m}N) \leq 1$, and so $\dim_R M - \operatorname{depth}_R M \leq 1$ and $\dim_S(N/\underline{m}N) - \operatorname{depth}_S(N/\underline{m}N) \leq 1$. Thus M over R and $N/\underline{m}N$ over S are aCM. Moreover, the above inequality yields the remainder.

3. A ACM MODULES AND Ext FUNCTORS

Throughout this section, (R, \underline{m}) is a CM local ring of dimension d, and C is a canonical module of R. Recall that a maximal Cohen-Macaulay module C of type 1 and of finite injective dimension is called a canonical module of R.

Proposition 3.1. Let M be an aCM R-module with depth M=t. If $\dim M$ -depth M=1, then $\operatorname{Ext}_R^i(M,C)\neq 0$ only if i=d-t,d-t-1.

Proof. [3, Propositions 3.1(b)] yields that $\operatorname{grade}_C M = \operatorname{grade} M$. Thus [3, Proposition 1.2(g), (i)] implies that $\sup\{i : \operatorname{Ext}_R^i(M,C) \neq 0\} = d-t$ and $\inf\{i : \operatorname{Ext}_R^i(M,C) \neq 0\} = d-t-1$. This completes the proof. \square

Theorem 3.2. Suppose that M is not a CM R-module. Then M is an aCM module with depth M=t if and only if $\operatorname{Ext}_R^i(M,C)\neq 0$ exactly when i=d-t,d-t-1.

Proof. (\Longrightarrow) . This is obvious by Proposition 3.1.

(\Leftarrow). Since $\operatorname{Ext}_R^{d-t}(M,C) \neq 0$ and $\operatorname{Ext}_R^i(M,C) = 0$ for all i > d-t, by [3, Proposition 1.2(g)] we have depth M = t. Again, by [3, Propositions 1.2(h) and 3.1(b)] grade M = d - t - 1, and so by [3, Proposition 1.2(i)] dim M = t + 1. Therefore, M is an aC.M module.

Acknowledgments

We would like to sincerely thank the referee for a thorough reading of the manuscript, pointing out some mistakes, and suggesting some improvements.

References

- 1. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press 1998.
- 2. L. Chu, Z. Tang and H. Tang, A note on almost Cohen-Macaulay modules, *Journal of Algebra and Its Application*. **14**(10) (2015), 1-7.
- 3. H. Foxby, On the μ^i in a minimal injective resolution, *Mathematica Scandinavica*. **29** (1971), 175-186.
- 4. Y. Han, D-rings, Acta Math. Sinica. 4 (1998), 1047-1052.
- C. Ionescu, More properties of almost Cohen-Macaulay rings, Journal of Commutative Algebra. 7(3) (2015), 363-372.
- 6. M. Kang, Almost Cohen-Macaulay modules, 29(2) (2001), 781-787.
- M. Kang, Addendum to almost Cohen-Macaulay modules, 30(2) (2002), 1049-1052.
- 8. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- 9. D. Rees, The grade of an ideal or module, *InProc. Cambridge Philos. Soc.* **53** (1957), 28-42.
- 10. K. Yoshida, Tensor products of perfect modules and maximal surjective Buchsbaum modules, *Journal of Pure and Applied Algebra*. **123** (1988), 313-326.

A. Mafi;

Department of Mathematics, University of Kurdistan, P.O.Box 416, Sanandaj, Iran.

Email:a_mafi@ipm.ir

S. Tabejamaat;

Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.

 ${\tt Email:samanetabejamaat_golestan@yahoo.com}$

RESULTS ON ALMOST COHEN-MACAULAY MODULES

A. MAFI AND S. TABEJAMAAT

نتایجی در مورد مدولهای تقریبا کوهن-مکولی

امیر مافی و سمانه تابع جماعت امیر مافی امیر مافی گروه ریاضی، دانشگاه کردستان، ص .

فرض کنید (R,\underline{m}) یک حلقه جابه جایی، نوتری و موضعی و M یک R-مدول با تولید متناهی و ناصفر باشد. در این مقاله نشان می دهیم اگر R حلقه تقریباً کوهن مکولی و M مدول کامل با بعد پروژکتیوی متناهی باشد آن گاه M تقریباً کوهن مکولی است. ما همچنین با استفاده از فانکتور Ext یک شرط لازم و کافی برای آن که M تقریباً کوهن – مکولی باشد را ارائه می دهیم.

Ext کلمات کلیدی: مدول تقریباً کوهن-مکولی، مدول کامل، فانکتور