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NONNIL-NOETHERIAN MODULES OVER
COMMUTATIVE RINGS

A. YOUSEFIAN DARANI∗

Abstract. In this paper, we introduce a new class of modules
that is closely related to the class of Noetherian modules. Let R
be a commutative ring with identity, and M be an R-module such
that Nil(M) is a divided prime submodule of M . M is called a
nonnil-Noetherian R-module if every nonnil submodule of M is
finitely-generated. We prove that many properties of the Noether-
ian modules are also true for the nonnil-Noetherian modules.

Throughout this paper, all rings are commutative with 1 ̸= 0, and
all modules are unitary. Let R be a commutative ring with identity,
and Nil(R) be the set of nilpotent elements of R. Recall from [17] and
[9] that a prime ideal of R is called a divided prime ideal if P ⊂ Rx for
every x ∈ R \ P . Thus a divided prime ideal is comparable to every
ideal of R. In [9], [10], [11], [12], [13], and [14] shown that the class of
rings, H = {R|R is a commutative ring, and that Nil(R) is a divided
prime ideal of R}. In [7] and [8], Anderson and Badawi have general-
ized the concepts of Prüfer, Dedekind, Krull, and Bezout domains to
the context of rings that are in the class H. Also, Lucas and Badawi
[15] have generalized the concept of Mori domains to the context of
rings that are in the class H. Let R be a ring, Z(R) be the set of
zero-divisors of R, and S = R \ Z(R). Then T (R) := S−1R denotes
the total quotient ring of R. We start by recalling some background
materials. A non-zero-divisor of a ring R is called a regular element,
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and an ideal of R is said to be regular if it contains a regular element.
An ideal I of a ring R is said to be a nonnil ideal if I ⊈ Nil(R). If I
is a nonnil ideal of a ring R ∈ H, then Nil(R) ⊂ I. In particular, this
holds if I is a regular ideal of a ring R ∈ H. Recall from [10] that for
a ring R ∈ H, the map ϕ : T (R) → RNil(R), given by ϕ((a/b) = a/b,
for a ∈ R and b ∈ R \ Z(R), is a ring homomorphism from T (R) into
RNil(R), and ϕ restricted to R is also a ring homomorphism from R into
RNil(R), given by ϕ(x) = x/1 for every x ∈ R.

Let R be a ring, and M be an R-module. M is called a cancellation
module if whenever IM = JM for ideals I and J of R, then I = J (see
[20]). For a submodule N of M , we denote by (N :R M) the residual of
N by M , i.e. the set of all r ∈ R such that rM ⊆ N . The annihilator
of M , which is denoted by annR(M), is then (0 :R M). An R-module
M is called a multiplication module if every submodule N of M has the
form IM for some ideal I of R. Note that since I ⊆ (N :R M), then
N = IM ⊆ (N :R M)M ⊆ N so that N = (N :R M)M [22]. Finitely-
generated faithful multiplication modules are cancellation modules [22,
Theorem 3.1]. For a submodule N of M , if N = IM for some ideal I
of R, then we say that I is a presentation ideal of N . Note that it is
possible that for a submodule N , no such presentation ideal exists. For
example, assume thatM is a vector space over an arbitrary field F with
dimFM ≥ 2, and let N be a proper subspace of M such that N ̸= 0.
Then if N has a presentation ideal, then N = IM for some ideal I
of F . Since the only ideals of F are 0 and F itself, I = 0 or I = F .
Hence, N = 0 or N = M , a contradiction. Clearly, every submodule of
M has a presentation ideal if and only if M is a multiplication module.
Let N and K be the submodules of a multiplication R-module M with
N = I1M and K = I2M for some ideals I1 and I2 of R. The product
of N and K, denoted by NK, is defined by NK = I1I2M . Then,
by [5, Theorem 3.4], the product of N and K is independent from
presentations of N and K. Moreover, for a, b ∈ M , by ab, we mean
the product of Ra and Rb. Clearly, NK is a submodule of M and
NK ⊆ N ∩K (see [5]).

Let R be a ring, and M an R-module. An element r ∈ R is called
a zero-divisor on M , provided that rm = 0 for some non-zero m ∈ M .
We denote by ZR(M) (briefly, Z(M)) the set of all zero-divisors of M .
It is easy to see that Z(M) is not necessarily an ideal of R but it has
the property that if a, b ∈ R with ab ∈ Z(M), then either a ∈ Z(M)
or b ∈ Z(M). A submodule N of M is called a nilpotent submodule if
(N :R M)nN = 0 for some positive integer n. An element m ∈ M is
said to be nilpotent if Rm is a nilpotent submodule of M [3]. We let
Nil(M) to denote the set of all nilpotent elements of M . Then Nil(M)
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is a submodule of M , provided that M is a faithful module, and if, in
addition, M is multiplication, then Nil(M) = Nil(R)M =

∩
P , where

the intersection runs over all prime submodules of M , [3, Theorem
6]. If M contains no non-zero nilpotent elements, then M is called
a reduced R-module. A submodule N of M is said to be a nonnil
submodule if N ⊈ Nil(M). We recall that a proper submodule N of
M is prime if, for every r ∈ R and m ∈ M with rm ∈ N , either m ∈ N
or rM ⊆ N . If N is a prime submodule of M , then p := (N :R M) is a
prime ideal of R. In this case, we say that N is a p-prime submodule
of M . Let N be a submodule of a multiplication R-module M . Then
N is a prime submodule of M if and only if (N :R M) is a prime
ideal of R if and only if N = pM for some prime ideal p of R with
(0 :R M) ⊆ p, [22, Corollary 2.11]. We recall from [4] that a prime
submodule of M is called a divided prime submodule of M if P ⊂ Rm
for every m ∈ M \ P . Thus a divided prime submodule is comparable
to every submodule of M .

Let M be an R-module, and set

T = {t ∈ S : for all m ∈ M, with tm = 0, m = 0} =
(R \ Z(M)) ∩ (R \ Z(R)).

T is a multiplicatively-closed subset of S, and if M is torsion-free, then
T = S. In particular, if M is a faithful multiplication R-module, then
T = S [22, Lemma 4.1]. We denote T−1M by T(M).

Let R be a commutative ring, and set

H(R) =
{M |M is an R-module, and Nil(M) is a divided prime submodule of M},
and

H0(R) = {M ∈ H|Nil(M) = Z(M)M}.
If M ∈ H(R) (resp., M ∈ H0(R)), then we may write M ∈ H (resp.,

M ∈ H0) instead if there is no confusion. For an R-module M ∈ H,
Nil(M) is a prime submodule of M . Thus P := (Nil(M) :R M) is a
prime ideal of R.

Lemma 1. Let R be a commutative ring, and M an R-module with
Nil(M), a proper submodule. Then, (Nil(M) :R M) ⊆ Z(M).

Proof. If (Nil(M) :R M) ⊈ Z(M), then, there exists a ∈ R \ Z(M)
with a ∈ (Nil(M) :R M). As Nil(M) is a proper submodule of M ,
there exists m ∈ M \ Nil(M). In this case, am ∈ Nil(M). Thus
there exists a positive integer k such that (Ram :R M)kRam = 0.
Then we have ((Ram :R M)kRm)a = (Ram :R M)kRam = 0. As a /∈
Z(M), we have (Ram :R M)kRm = 0. On the other hand, ak(Rm :R
M)kRm ⊆ (Ram :R M)kRm = 0. Moreover, since a /∈ Z(M), ak /∈
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Z(M). Thus (Rm :R M)kRm = 0 which, means that m ∈ Nil(M), a
contradiction. □

Let R be a commutative ring, and M an R-module with Nil(M)
a proper submodule. By Lemma 1, R \ Z(M) ⊆ R \ (Nil(M) :R
M). In particular, T ⊆ R \ (Nil(M) :R M). Thus we can define a
mapping Φ : T(M) → MP , given by Φ(x/s) = x/s, which is clearly
an R-module homomorphism. The restriction of Φ to M is also an
R-module homomorphism from M into MP given by Φ(m) = m/1 for
every m ∈ M .

Badawi [14] defined a commutative ring R to be a nonnil-Noetherian
ring if every nonnil ideal of R is finitely-generated. In this paper,
we introduce a generalization of nonnil-Noetherian rings. Let R be
a commutative ring. An R-module M is called a nonnil-Noetherian
module if every nonnil submodule of M is finitely-generated. We
study the basic properties of the nonnil-Noetherian modules. More-
over, we study the interplay between the nonnil-Noetherian rings and
the nonnil-Noetherian modules.

Proposition 2. LetR be acommutative ring, andM a finitely-generated
faithful multiplication R-module. Then Nil(R) = (Nil(M) :R M).

Proof. Since M is faithful, Nil(M) is a submodule of M by [3, Theo-
rem 6]. Therefore Nil(M) = (Nil(M) :R M)M since M is a multipli-
cation module. On the other hand, since M is a faithful multiplication
R-module, it follows from [3, Theorem 6] that Nil(M) = Nil(R)M .
Furthermore, by [22, Theorem 3.1],M is a cencellation R-module. Con-
sequently, Nil(R) = (Nil(M) :R M). □

Proposition 3. LetR be acommutative ring, andM a finitely-generated
faithful multiplication R-module. Then Nil(M)q = Nil(Mq) for every
prime ideal q of R.

Proof. SinceM is a finitely-generated faithful multiplication R-module,
Mq is a finitely-generated multiplication Rq-module by [21, Lemma
9.12] and [6, Corollary 3.5]. Moreover, since M is finitely-generated,
we have (0 :Rq Mq) = (0 :R M)q = 0, i.e. Mq is a faithful Rq-module.
Hence, by [3, Theorem 6], we have:

Nil(M)q = [Nil(R)M ]q = Nil(R)qMq = Nil(Rq)Mq = Nil(Mq).

□

Let R be a commutative ring. We define H0 as follows:

H0 = {R ∈ H|Nil(R) = Z(R)}.
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Proposition 4. Let R be a commutative ring, and M be a finitely-
generated faithful multiplication R-module.

(1) R ∈ H if and only if M ∈ H.
(2) R ∈ H0 if and only if M ∈ H0.

Proof. (1) R ∈ H if and only if Nil(R) is a divided prime ideal of R if
and only if (Nil(M) :R M) is a divided prime ideal of R by Proposition
2, if and only if Nil(M) is a divided prime submodule of M by [4,
Proposition 6], if and only if M ∈ H.

(2) First note that since M is a faithful multiplication R-module,
it is torsion-free, by [22, Lemma 4.1]. Thus T = S, which implies
that Z(M) ⊆ Z(R). On the other hand, we have Z(R) ⊆ Z(M)
since M is faithful. Hence, Z(R) = Z(M). Now R ∈ H0 if and only
if Nil(R) = Z(R) if and only if Nil(R)M = Z(R)M = Z(M)M if
and only if Nil(M) = Z(M)M by [3, Theorem 6] if and and only if
M ∈ H0. □
Proposition 5. Let R be a commutative ring, and q a prime ideal of
R. If M is a finitely-generated faithful multiplication R-module with
M ∈ H(R), then Mq ∈ H(Rq).

Proof. Since q is a prime ideal of R and M a finitely-generated faithful
multiplication R-module, it follows from [22, Corollary 2.11] that qM
is a prime submodule of M . Hence Nil(M) ⊆ qM by [3, Theorem
6]. Hence, (Nil(M) :R M)M ⊆ qM , and since M is a cancellation
R-module, we have (R \ q) ∩ (Nil(M) :R M) = ∅. Therefore, by
Proposition 3, Nil(Mq) = Nil(M)q is a prime submodule of Mq. Now
suppose that m = x/s /∈ Nil(Mq). Then x /∈ Nil(M) and Nil(M)
divided prime gives Nil(M) ⊂ Rx. If a/t ∈ Nil(Mq) = Nil(M)q,
then a ∈ Nil(M) ⊂ Rx. Thus a = rx for some r ∈ R. In this case,
a/t = (rx)/t = (srx)/(st) = ((sr)/t)m ∈ Rqm, i.e. Nil(Mq) ⊂ Rqm.
Therefore, Nil(Mq) is a divided prime submodule of Mq, and hence,
Mq ∈ H(Rq). □
Theorem 6. ([19, Theorem 5]) A non-zero finitely-generated R-module
M is Noetherian if and only if every prime submodule of M is finitely
generated.

Lemma 7. ([23, Lemma 2.5] Let R be a ring, and M a finitely-
generated faithful multiplication R-module such that M ∈ H. Then
M/Nil(M) is isomorphic to Φ(M)/Nil(Φ(M)) as R-modules.

Theorem 8. Let R be a commutative ring, and let M ∈ H be an
R-module. The following statements are equivalent:

(1) M is a nonnil-Noetherian R-module.
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(2) For every nonnil submodule N of M , M/N is a Noetherian
R-module.

(3) M satisfies ACC on nonnil submodules.
(4) M satisfies ACC on nonnil finitely-generated submodules.

Proof. (1) ⇒ (2) Let M be a nonnil-Noetherian R-module. Suppose
that N is a nonnil submodule of M . Let K/N be a non-zero submodule
of M/N . Then K is a nonnil submodule of M . Since M is nonnil-
Noetherian, K is finitely-generated, and so K/N is finitely-generated.
Hence, M/N is a Noetherian R-module.

(2) ⇒ (3) Let N1 ⊆ N2 ⊆ · · · be an ascending chain of nonnil
submodules of M . In this case, M/N1 is a Noetherian R-module by
assumption. Moreover, N2/N1 ⊆ N3/N1 ⊆ · · · is an ascending chain
of submodules of M/N1. Since M/N1 is Noetherian, there exists a
positive integer t such that Nt/N1 = Ns/N1 for every s ≥ t. Thus
Nt = Ns for every s ≥ t.

(3) ⇒ (4) Is clear.
(4) ⇒ (1) If M is not a nonnil-Noetherian R-module, then there

exists a nonnil submoduleN ofM such thatN is not finitely-generated.
Choose a non-nilpotent element m1 ∈ N . Then Rm1 ⊆ N , and since
N is not finitely-generated, N ̸= Rm1. Now choose a non-zero element
m2 ∈ N \ Rm2. In this case, Rm1 + Rm2 ⊂ N . Thus we can choose
a non-zero m3 ∈ N \ (Rm1 + Rm2). Then Rm1 + Rm2 + Rm3 ⊂ N .
Continuing this way, we get a strictly ascending chain Rm1 ⊂ Rm1 +
Rm2 ⊂ Rm1 + Rm2 + Rm3 ⊂ · · · of nonnil submodules of M , a
contradiction. Thus M is a nonnil-Noetherian R-module. □

Theorem 9. Let R be a commutative ring, and M be an R-module
such that Nil(M) is a submodule of M . If M is a nonnil-Noetherian
R-module, then M/Nil(M) is a Noetherian R-module. The converse
is true if M ∈ H.

Proof. Assume that M is a nonnil-Noetherian R-module. Set L =
M/Nil(M), and let Q be a non-zero prime submodule of L. Then
Q = P/Nil(M) for some nonnil prime submodule P of M , and hence,
P is finitely-generated. It obviously follows that Q = P/Nil(M) is a
finitely-generated submodule of L. Hence, L is a Noetherian R-module
by [19, Theorem 5]. Conversely, suppose thatM/Nil(M) is Noetherian,
and M ∈ H. If N is a nonnil submodule of M , then if follows from
M ∈ H that Nil(M) ⊆ N , and hence:

M
N

∼=
M

Nil(M)
N

Nil(M)



NONNIL-NOETHERIAN MODULES 207

is Noetherian. Thus M satisfies condition (2) of Theorem 8 and is
nonnil-Noetherian. □
Corollary 10. Let R be a commutative ring, and M an R-module with
M ∈ H. If every nonnil prime submodule of M is finitely-generated,
then M is a nonnil-Noetherian R-module.

Proof. Suppose that every nonnil prime submodule of M is finitely-
generated. Then every (nonzero) prime submodule of L = M/Nil(M)
is finitely-generated. Hence, L is a R-module by Theorem 6. Thus, M
is a nonnil-Noetherian R-module by Theorem 9. □
Proposition 11. ([23, Proposition 2.2] Let R be a commutative ring,
and M a finitely-generated faithful multiplicationR-module with M ∈
H. Then Φ(M) ∈ H.

Corollary 12. Let R be a commutative ring and M an R-module with
M ∈ H. The following statements are equivalent:

(1) M is a nonnil-Noetherian R-module.
(2) M/Nil(M) is a Noetherian R-module.
(3) Φ(M)/Nil(Φ(M)) is a Noetherian R-module.
(4) Φ(M) is a nonnil-Noetherian R-module.

Proof. (1) ⇒ (2) This follows from Theorem 9. (2) ⇒ (3) This is a
direct consequence of Lemma 7. (3) ⇒ (4) Again follows from Theorem
9 because Φ(M) ∈ H by Proposition 11. □
Theorem 13. Let R be a commuative ring, and M a finitely-generated
multiplication R-module. Then M is a nonnil-Noetherian R-module if
and only if R is a nonnil-Noetherian ring.

Proof. Assume that M is a nonnil-Noetherian R-module, and let I be a
nonnil ideal of R. Then IM is a nonnil submodule of M by Proposition
2. Hence, IM is finitely-generated submodule ofM . It follows from the
fact that M is a cancellation R-module and [16, Lemma 3.5] that I is
a finitely-generated ideal of R. Consequently, R is a nonnil-Noetherian
ring. Conversely, assume that R is a nonnil-Noetherian ring, and let
N be a nonnil submodule of M . Then by Proposition 2, (N :R M) is a
nonnil ideal of R. Hence, (N :R M) is a finitely-generated ideal of R,
and hence, N = (N :R M)M is a finitely-generated submodule of M .
Thus M is a nonnil-Noetherian R-module. □
Theorem 14. Let R be a commutative ring, and M a finitely-generated
faithful multiplication R-module with M ∈ H. If each nonnil prime
submodule of M has a power that is finitely-generated, then M is a
nonnil-Noetherian R-module.
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Proof. Let P be a nonnil prime ideal of R. Then PM is a nonnil
prime submodule of M by Proposition 2 and the fact that M is a
cancellation module. Hence, there exists a positive integer t such that
(PM)t = P tM is a finitely-generated submodule of M . Hence, P t is
finitely-generated by [16, Lemma 3.5]. It follows from [14, Theorem
1.6] that R is a nonnil-Noetherian ring. Therefore, M is a nonnil-
Noetherian R-module by Theorem 13. □

Proposition 15. Let R be a commutative ring, and M a Noetherian
multiplication R-module. If P ⊂ Q are prime submodules of M such
that there exists a prime submodule properly between P and Q, then
there are infinitely many prime submodules of M properly between P
and Q.

Proof. Without loss of generality, we may assume that M is faithful,
otherwise, by replacing R with R/Ann(M), we can assume that M
is faithful. If we set p = (P :R M), and q = (Q :R M), then p ⊂
q are prime ideals of R by [22, Corollary 2.11]. Suppose that N =
IM is a prime submodule of M properly between P and Q. Then
I is a prime ideal of R properly between p and q by [22, Corollary
2.11]. On the other hand, since M is a Noetherian R-module, it follows
that R is a Noetherian ring. Hence, by [18, Theorem 144], there are
infinitely many prime ideals of R properly between p and q. As there
is a one-to-one correspondence between the prime ideals of R and the
prime submodules of M , it follows that there are infinitely many prime
submodules of M properly between P and Q. □

Theorem 16. Let R be a commutative ring, and M ∈ H be a nonnil-
Noetherian multiplication R-module. If P ⊂ Q are prime submodules of
M such that there exists a prime submodule properly between P and Q,
then there are infinitely many prime submodules of M properly between
P and Q.

Proof. If we set L = M/Nil(M), then L is a Noetherian R-module by
Theorem 9. Suppose that P ⊂ Q are prime submodules of M such
that there exists a prime submodule N properly between P and Q.
Then the prime submodule N/Nil(M) is properly between the prime
submodules P/Nil(M) ⊂ Q/Nil(M) of the R-module L. Hence, there
are infinitely many prime submodules of L properly between P/Nil(M)
and Q/Nil(M) by Proposition 15. Therefore, there are infinitely many
prime submodules of M properly between P and Q. □
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جابجایی حلقه�های روی ناپوچ-نوتری مدول�های

دارانی یوسفیان احمد
کاربردها و ریاضیات گروه ریاضی، علوم دانشکده اردبیلی، محقق دانشگاه

فرض می�کنیم. معرفی را می�باشد نزدیک نوتری مدول�های رده به که مدول�ها از رده�ای مقاله این در
زیرمدول یک Nil(M) که بطوری باشد R-مدول یک M و باشد یکدار و جابجابی حلقه یک R کنید
پوچ غیر زیرمدول هر هرگاه می�نامیم ناپوچ-نوتری مدول یک را M می�باشد. M از شده تقسیم اول
مدول�های برای نوتری مدول�های خواص از بسیاری که می�کنیم ثابت باشد. متناهی تولید با M از

برقرارند. نیز ناپوچ-نوتری

فی-مدول. تقسیم�شده، زیرمدول متناهی، تولید با زیرمدول نوتری، مدول نوتری، حلقه کلیدی: کلمات
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