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ON THE VANISHING OF DERIVED LOCAL
HOMOLOGY MODULES

M. HATAMKHANI

Abstract. Let R be a commutative Noetherian ring, a be an

ideal of R, and D(R) denote the derived category of R-modules.

For any homologically-bounded complex X, we conjecture that

supLΛa(X) ≤ magRX. We prove this in several cases.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with

non-zero identity, andD(R) denotes the derived category of R-modules.

The full subcategory of homologically-bounded complexes is denoted

by D□(R), and that for complexes homologically-bounded to the right

(resp. left) is denoted by D⊐(R) (resp. D⊏(R)). Also Df
□(R)(resp.

DArt
□ (R)) consists of homologically-bounded complexes with finitely-

generated (resp. Artinian) homologies. The symbol ≃ denotes an

isomorphism in the category D(R). For any complex X in D⊐(R)

(resp. D⊏(R)), there is a bounded to the right (resp. left) complex U

of projective (resp. injective) R-modules such that U ≃ X. A such
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complex U is called a projective (resp. injective) resolution of X. The

left-derived tensor product functor −⊗L
R ∼ is computed by taking a

projective resolution of the first argument or of the second one. Also,

the right-derived homomorphism functor RHomR(−,∼) is computed

by taking a projective resolution of the first argument or by taking an

injective resolution of the second one.

Let a be an ideal of R, and C0(R) denote the full sub-category of

R-modules. It is known that the a-adic completion functor

Λa(−) = lim←−
n

(R/an ⊗R −) : C0(R)→ C0(R)

is not right exact, in general. The left-derived functor of Λa(−) ex-

ists in D(R), and so, for any complex X ∈ D⊐(R), the complex

LΛa(X) ∈ D⊐(R) is defined by LΛa(X) := Λa(P ), where P is a (ev-

ery) projective resolution of X. Let X ∈ D⊐(R). For any integer i,

the i-th local homology module of X with respect to a is defined by

Ha
i (X) := Hi(LΛ

a(X)). First E. Matlis [12], in 1974, studied the theory

of the local homology. Next Simon in [18] and [19] continued the study

of this theory. Later, J.P.C. Greenlees and J.P. May [9] defined local

homology groups of a module M using a new approach. Then came

the works of Alonso Tarŕıo, Jeremı́as López and Lipman [1]. After the

works of [17], [4], [5], [8], and [14], started a new era in the study of

local homology.

The most essential vanishing result for the local cohomology mod-

ules H i
a(M) is Grothendieck’s Vanishing Theorem, which asserts that

H i
a(M) = 0 for all i > dimR M . Letting X ∈ D□(R), Foxby gen-

eralized this result for derived local cohomology modules H i
a(X). He

proved that H i
a(X) = 0 for all i > dimR X [7, Theorem 7.8, Corollary

8.29]. We intend to establish the dual of this result for the derived

local homology modules. Let Č(a) denote the Čech complex of R on

a set a of generators of a. By [1, (0.3), aff,p.4] (see also [17, Section 4]

for corrections),

LΛa(X) ≃ RHomR(Č(a), X).
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Using this isomorphism Frankild [8, Theorem 2.11] proved that

inf LΛa(X) = widthR(a, X), where widthR(a, X) := inf(R/a⊗L
R X).

The aim of this work was to find an upper bound for supLΛa(X).

Finding a good upper bound for supLΛa(X) was considered in [17] and

[8]. In fact, we conjecture that Ha
i (X) = 0 for all i > magR X. Our

investigation on this conjecture is the core of this paper. We show the

correctness of this conjecture in several cases. Namely, we prove that

if for all i ∈ Z, either:
CoassR Hi(X) = AttRHi(X),

Hi(X) is finitely-generated, Artinian or Matlis reflexive,

Hi(X) is linearly-compact,

R is complete local, and Hi(X) has finitely many minimal coassoci-

ated prime ideals; or:

R is complete local with the maximal ideal m, and mnHi(X) is min-

imax for some integer n ≥ 0,

then Ha
i (X) = 0 for all i > magR X.

First, Sazeedeh [16] studied connections between the Gorenstein in-

jective modules and the local cohomology modules. The Gorenstein

flat dimension of X is defined by

GfdR X := inf{sup{l ∈ Z|Ql ̸= 0}|Q is a bounded to the right

complex of Gorenstein flat R-modules and Q ≃ X}.

For more details on the theory of Gorenstein homological dimensions

for complexes, we refer the reader to [2].

2. Results

In what follows, we denote the faithful exact functor,

HomR(−, ⊕
m∈MaxR

E(R/m))

by (−)∨. Let M be an R-module. A prime ideal p of R is said to be a

coassociated prime ideal of M if there is an Artinian quotient L of M

such that p = (0 :R L). The set of all coassociated prime ideals of M
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is denoted by CoassR M . Also, AttRM is defined by

AttRM := {p ∈ SpecR| p = (0 :R L) for some quotient L of M}.

Clearly, CoassR M ⊆ AttRM and the equality holds if either R or M

is Artinian. More generally, if M is representable, then it is easy to

check that CoassR M = AttRM . If 0 −→ M −→ N −→ L −→ 0 is an

exact sequence of R-modules and R-homomorphisms, then it is easy to

check that:

CoassR L ⊆ CoassR N ⊆ CoassR L ∪ CoassR M,

and:

AttRL ⊆ AttRN ⊆ AttRL ∪ AttRM.

Also if R is local, then one can see that CoassR M = AssR M∨.

For an R-module M , set cda M := sup{i|H i
a(M) ̸= 0}.

By [9, Corollary 3.2], Ha
i (M) = 0 for all i > cda R.

Next, we recall the definition of the notion magR M .

Definition 2.1. Let M be an R-module.

i) (See [20]) The magnitude of M is defined by

magR M := sup{dimR/p|p ∈ CoassR M}.

If M = 0, then we put magR M = −∞.

ii) (See [15]) The Noetherian dimension ofM is defined inductively

as follows: when M = 0, put NdimR M = −1. Then, by induc-

tion, for an integer d ≥ 0, we put NdimR M = d if NdimR M < d

is false, and for every ascending sequenceM0 ⊆M1 ⊆ . . . of sub-

modules of M , there exists n0 such that NdimR Mn+1/Mn < d

for all n > n0.

iii) (See [14]) The co-localization of M at a prime ideal p of R is

defined by

pM := HomRp((M
∨)p, ERp(Rp/pRp)).

Then CosuppR M is defined by

CosuppR M := {p ∈ SpecR|pM ̸= 0}.
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iv) (See [3]) M is said to be N -critical if NdimR N < NdimR M for

all proper submodules N of M .

If 0 −→ X −→ Y −→ Z −→ 0 is an exact sequence of R-modules

and R-homomorphisms, then it is easy to verify that:

magR Y = max{magR X,magR Z}.

Recall that anR-moduleM is said to beMatlis reflexive if the natural

homomorphism M −→M∨∨ is an isomorphism.

Now we recall some definitions, which are required in the following

statements.

We begin by recalling the definition of linearly-compact modules

from [11]. Let M be a topological R-module. Then M is said to be

linearly-topologized if M has a base M consisting of sub-modules for

the neighborhoods of its zero element. A Hausdorff linearly-topologized

R-module M is said to be linearly-compact if for any family F of cosets

of closed submodules of M which has the finite intersection property,

the intersection of all cosets in F is non-empty. A Hausdorff linearly

topologized R-module M is called semi-discrete if every submodule of

M is closed. The class of semi-discrete linearly-compact modules is

very large it contains many important classes of modules such as the

class of Artinian modules or the class of finitely-generated modules over

a complete local ring.

An R-module M is called minimax if it has a finitely-generated sub-

module N such that M/N is Artinian. By [21, Lemma 1.1], over a

complete local ring R, an R-module M is minimax if and only if M is

semi-discrete linearly-compact and if and only if M is Matlis reflexive.

These definitions can be extended to complexes in obvious ways.

In the case (R,m) is a local ring, by [20, Lemma 2.2], we have

magM = dimM∨ for anyR-moduleM , where (−)∨ := HomR(−, E(R
m
)).

Following this idea, one could expect magRX = dimR X∨ .

Let X ∈ D(R). We know that dimR X∨ = sup{dimR Hi(X
∨)−i | i ∈

Z} = sup{dimR H−i(X)∨−i | i ∈ Z} = sup{dimR Hj(X)∨+j | j ∈ Z}.
Therefore, we define magRX as follows:
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Definition 2.2. Let R be a commutative Noetherian ring, and X ∈
D(R). We define magRX := sup{magRHi(X) + i | i ∈ Z}.

Lemma 2.3. Let (R,m) be a local ring, and X ∈ D(R). Then:

magRX = sup{dim R
p
+ supp X | p ∈ CosuppRX}.

Proof. By definition, we have magRX = dimR X∨. Now we know that

dimR X∨ = sup{dim R
p
− inf(X∨)p| p ∈ SuppR X∨}. Let p ∈ SpecR.

By definition, we have pX = HomRp((X
∨)p, E(R

p
)), and so:

supp X = − inf(X∨)p.

Also, by [14, Theorem 2.7] , CosuppRX = SuppR X∨. Hence,

magRX = sup{dim R
p
+ supp X| p ∈ CosuppRX}.

□

Remark 2.4. Let X and Y be complexes in D(R). Observe that the

isomorphism LΛa(X) ≃ RHomR(Č(a), X) immediately gives:

LΛa(RHomR(X,Y )) ≃ RHomR(X,LΛa(Y )) ≃ RHomR(RΓa(X), Y ).

Definition 2.5. (See [6]) Let X ∈ D(R).

i) If m is an integer, ΣmX denotes the complex X shifted (or

translated) m degrees (to the left); it is given by

(ΣmX)l = Xl−m , dΣ
mX

l = (−1)mdXl−m,

for l ∈ Z.
ii) If m,n ∈ Z, the truncated complexes τm⊏X and τn⊐X are given

by

τm⊏X = 0 −→ CX
m

d̂Xm−→ Xm−1

dXm−1−→ Xm−2

dXm−2−→ ...,

and

τn⊐X = ...
dXn+3−→ Xn+2

dXn+2−→ Xn+1

d̃Xn+1−→ ZX
n −→ 0,

where d̂Xm and d̃Xn+1 are the induced maps.

Lemma 2.6. Let R be a commutative Noetherian ring, and X ∈ D(R).
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i) If X ∈ D□(R), then supLΛa(X) ≤ sup{supLΛa(Hi(X)) +

i | i ∈ Z}.
ii) If (R,m) is a complete local ring and X ∈ DArt

□ (R), then

supLΛa(X) = sup{supLΛa(Hi(X)) + i |i ∈ Z}.

Proof. i) Let s := supLΛa(X), and assume that s > sup(LΛa(Hl(X)))+

l for all l. By descending induction on l, we show that, sup(LΛa(τl⊏X)) =

s for all l ∈ Z. This gives the desired contradiction, since τl⊏X ≃ 0

for l small enough. Since τl⊏X ≃ X for l large enough, the equality

sup(LΛa(τl⊏X)) = s certainly holds for large l.

In the inductive step, note that the exact triple,

(ΣlHl(X), τl⊏X, τl−1⊏X)

(see [6, Corollary 1.43]) induces an exact sequence:

... −→ Ha
m−l(Hl(X)) −→ Ha

m(τl⊏X) −→ Ha
m(τl−1⊏X) −→

Ha
m−l−1(Hl(X)) −→ ...

from which the desired assertion, sup(LΛa(τl−1⊏X)) = s, follows from

the inductive assumption,

sup(LΛa(τl⊏X)) = s, and the assumption sup(LΛa(Hl(X))) < s − l

made earlier.

ii) As X ∈ DArt
□ (R), it follows that X∨∨ ≃ X in D(R). Hence, we

have:

supLΛa(X) = supLΛa(X∨∨)

= supLΛa(RHomR(X
∨, E(

R

m
))

(a)
= sup(RHomR(X

∨,LΛa(E(
R

m
)))

(b)
= sup{supRHomR(Hi(X

∨),LΛa(E(
R

m
)))− i | i ∈ Z}

(c)
= sup{supLΛa(RHomR(Hi(X

∨), E(
R

m
)))− i | i ∈ Z}

= sup{supLΛa(Hi(X
∨)

∨
)− i | i ∈ Z}

= sup{supLΛa((H−i(X))∨∨)− i | i ∈ Z}
(d)
= sup{supLΛa(Hj(X)) + j | j ∈ Z}
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The equalities (a) and (c) follow by Remark 2.4, and sinceX∨ ∈ Df
□(R),

(b) follows from [6, Lemma 16.26]. Since X ∈ DArt
□ (R), the equality

(d) holds. □

Now we recall the following definition of Zoschinger:

Definition 2.7. Let M be an R-module. Then Coass(M) has a finite

final subset, when the set of minimal elements of Coass(M) is finite,

or equivalently, there exists a finite subset, {p1, . . . , pn} of Coass(M)

such that
∩
Coass(M) =

n∩
i=1

pi.

Theorem 2.8. Let a be an ideal of R, and X ∈ D□(R). Assume that

for all i ∈ Z, either:

i) CoassR Hi(X) = AttRHi(X),

ii) Hi(X) is N -critical,

iii) Hi(X) is finitely-generated or Matlis reflexive,

iv) Hi(X) is linearly-compact,

v) R is complete local and Hi(X) has finitely many minimal coas-

sociated prime ideals; or:

vi) R is complete local with the maximal ideal m, and mnHi(X) is

minimax for some integer n ≥ 0.

Then sup(LΛa(X) ≤magRX and equality holds if R is complete local

with the maximal ideal a and X ∈ DArt
□ (R).

Proof. From Lemma 2.6 i), we have:

supLΛa(X) ≤ sup{supLΛa(Hi(X)) + i | i ∈ Z}.

On the other hand, by [10, Theorem 2.8], in each of these cases,

supLΛa(Hi(X)) ≤ magRHi(X) for all i ∈ Z. Now the result follows

by the definition of magRX.

Now let (R,m) be a complete local ring. From [5, Theorem 4.8,

4.10], for each Artinian module M , NdimR M = max{i | Hm
i (M) ̸= 0}.

Hence, the last part follows from Lemma 2.6 ii) and [20, Theorem

2.10]. □
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Corollary 2.9. Let (R,m) be a complete local ring, and X ∈ DArt
□ (R).

Then magRX ≤ GfdR X.

Proof. From [13, Theorem 2.5], sup(LΛa(X)) ≤ GfdR X for any ideal

a of R. Now, the result follows by Theorem 2.8. □

Definition 2.10. (See [6])

i) Let X ∈ D⊐(R), and Y ∈ D⊏(R). The module:

H−i(RHomR(X, Y ))

is often denoted by ExtiR(X, Y ), and called the i-th hyper Ext

module of the complexes X and Y.

ii) Let X, Y ∈ D⊐(R). The module: Hi(X ⊗L
R Y ) is sometimes

denoted by TorRi (X, Y ), and called the i-th hyper Tor module

of the complexes X and Y.

Assume that M and N are two R-modules, and X and Y are two

complexes. The following result is deduced from Theorem 2.8.

Corollary 2.11. Assume that M is a linearly-compact R-module, N

an R-module, and X, Y ∈ D(R).

i) If RHomR(N,M) ∈ D□(R), then Ha
i (RHomR(N,M)) = 0 for

all i >mag(RHomR(N,M)).

ii) If N is finitely-generated, and N ⊗L
R M ∈ D□(R), then:

Ha
i (N ⊗L

R M) = 0

for all i >mag(N ⊗L
R M).

Proof. By [4, Lemma 2.5 and 2.6], the R-modules ExtiR(N,M) and

TorRi (N,M) are linearly-compact for all non-negative integers i. Hence,

the result follows by Theorem 2.8. □
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مشتق�شده موضعی همولوژی مدول�های شدن صفر

خانی حاتم مرضیه
٣٨١۵۶٨٣٨۴٩ ریاضی-کدپستی علوم-گروه اراک-دانشکده بهشتی-دانشگاه شهید اراک-خیابان

مشتق�شده کاتگوری D(R)نشان�دهنده و R از ایده�آلی a و نوتری جابجایی حلقه یک R کنید فرض
همبافت بزرگی ،X کراندار همولوژیکی بطور همبافت هر برای می�زنیم حدس ما باشد. R-مدول�ها از
چند در و باشد X روی a ایده�آل به نسبت چپ شده مشتق فانکتور سوپریموم برای بالایی کران ،X

میکنیم. ثابت را آن� مختلف حالت

نوتری. بعد مدول، بزرگی موضعی، همولوژی مدول�های موضعی، کوهمولوژی کلیدی: کلمات

١٠
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