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Abstract 

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework 

based on the independent component analysis (ICA). We propose analytical procedures for training clean 

speech and noise models using the Baum re-estimation algorithm, and present a maximum a posteriori 

(MAP) estimator based on the Laplace-Gaussian (for clean speech and noise, respectively) combination in 

the HMM framework, namely sparse code shrinkage-HMM (SCS-HMM). 

The proposed method on the TIMIT database in the presence of three noise types at three SNR levels in 

terms of PESQ and SNR are evaluated and compared with Auto-Regressive HMM (AR-HMM) and speech 

enhancement based on HMM with discrete cosine transform (DCT) coefficients using the Laplace and 

Gaussian distributions (LaGa-HMMDCT). The results obtained confirm the superiority of the SCS-HMM 

method in the presence of non-stationary noises compared to LaGa-HMMDCT. The results of the SCS-HMM 

method represent a better performance of this method compared to AR-HMM in the presence of white noise 

based on the PESQ measure.  

 

Keywords: Speech Enhancement, HMM-based Speech Enhancement, Multivariate Laplace Distribution, 

Independent Component Analysis (ICA transform), Sparse Code Shrinkage Enhancement Method. 

1. Introduction 

Speech enhancement aims to improve speech 

quality using various algorithms. Enhancing 

speech degraded by noise, or noise reduction, is 

the most important field of speech enhancement, 

and is used for many applications such as mobile 

phones, VoIP, teleconferencing systems, speech 

recognition, and hearing aids.  

Among the different proposed solutions, the 

statistical approach in speech enhancement is 

often preferred due to the stochastic nature of 

speech signals [1]. Generally, the statistical 

methods are divided into the model-based [2, 3] 

and non-model-based [4, 5] techniques. In the 

model-based procedures, the clean speech and 

noise models are first generated in a training 

phase, and then the clean speech is estimated 

based on this prior information in a test phase. 

The non-model-based procedures only consist of 

the test phase, and the required information is 

estimated using the noisy speech. Under the non-

stationary noisy conditions, the model-based 

techniques have advantages over the non-model-

based techniques through prior information [3].  

Hidden Markov Model (HMM) is one of the 

powerful model-based methods applied to speech 

enhancement and has resulted in high efficiency, 

especially under non-stationary noisy conditions 

[2]. One of the most important factors that 

influences the model precision of an HMM is the 

probability density function (pdf) of clean speech, 

noise, and noisy speech. In the HHM-based 

speech enhancement, the Gaussian pdf is used to 

model clean speech and noise, while the recent 

studies [4,6,7] have shown that clean speech and 

noise pdf are non-Gaussian distributions. The 

multivariate Laplace distribution has been 

recommended for modeling HMM as a non-

Gaussian distribution [8]. In this modeling, using 

multivariate Laplace distribution causes a non-

closed form formula. To solve this problem, it was 

assumed that the DCT coefficients were 

statistically independent, whereas DCT only  
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reduces the correlation between the coefficients, 

and they are not completely uncorrelated to each 

other. If we assume that the DCT coefficients are 

uncorrelated to each other and that the distribution 

of coefficients is Laplace, we cannot assume that 

the coefficients are statistically independent. If we 

use independent component analysis (ICA) 

instead of DCT, whose coefficients are greatly 

statistically independent from each other, we can 

do a more accurate statistical modeling. 

We modeled the clean speech signal using HMM 

in ICA domain with Laplace distribution, while 

doing the noise modeling only by assuming 

Gaussian pdf for noises. In this work, we propose 

a novel MAP HMM-based speech enhancement 

algorithm that uses the ICA transformation. Our 

theoretical analysis shows that under the 

assumption of Laplace clean speech and Gaussian 

noise, the proposed algorithm leads to a well-

known enhancement technique, sparse code 

shrinkage. This paper is organized as follows. In 

Section 2, the HMM training methods are 

reviewed. In Section 3, the MAP estimator is 

derived based on HMM in the ICA space. In 

Section 4, a summary of the proposed algorithm is 

given. In Section 5, we present the experimental 

evaluation and results, and in Section 6, the 

conclusions are given. 

 

2. Signal model 

Assume a time-domain noisy speech vector yn at 

time n that is composed of a clean speech vector 

sn and an additive noise vector dn given as (1). 

Taking the independent component analysis (ICA) 

of yn, we get (2) in this equation. We assumed that 

noise is independent from clean speech, and that 

the vectors have the length L and a zero mean. 

The AR features of P
th
 order an=[1,a(1),…,a(p)] 

for sn=[s(0),s(1),…,s(L-1)] could be derived by 

the linear predictive coefficient approach [9], and 

the AR coefficients of other signals are obtained 

analogously. 

n n ny s d   (1) 

ICA ICA ICAY S D   (2) 

An HMM with M states and N mixtures is defined 

as 1( , , , )M M M M N M N La c       , where   is 

the initial state distribution, a denotes the state 

transition probability distribution, c is the 

probability distribution for each mixture in each 

state, and M N L    is the matrix of pdf parameters 

in each mixture. The parameters of   are 

estimated by the Baum re-estimation formulas 

[10]. In order to estimate clean speech from noisy 

signal, it is necessary to construct the HMM 

models for clean speech (
S ) and noise (

D ) 

separately, and then combine them to create the 

noisy HMM (
Y ). 

 

2.1. Speech model 

Based on the central limit theorem, we can 

assume that 
ICAS  has a multivariate Gaussian pdf 

with independent coefficients according to (3) and 

(5). In these equations, index k shows the k
th
 ICA 

coefficient of an L-dimensional vector. 

As shown in [6], the Laplace distribution function, 

compared to the Gaussian distribution function, is 

closer to the speech signal distribution in different 

domains, and thus we can consider the distribution 

of vector ICAS  as a multivariate Laplace pdf. We 

know that the ICA coefficients are independent. 

Therefore, the multivariate Laplace pdf of ICAS  is 

derived by (4) and (5), where bk is the scale 

parameter of the k
th
 coefficient. In these equations, 

it is assumed that ICAS  has a zero mean. 
2

2

( ( ))1
( ( )) exp( )

22

ICA
ICA

kk

S k
p S k


   (3) 

( )1
( ( )) exp( )

2

ICA

ICA

k k

S k
p S k

b b
   

(4) 

1

0

( ) ( ( ))
L

ICA ICA
k

p S p S k




   (5) 

 

We used (4) and (5) for each mixture in each 

state, and estimated the model parameters of S  

in closed form using the Baum’s auxiliary 

function. In fact, changing Gaussian pdf to 

Laplace pdf in each HMM mixture modifies the 

equations for parameter estimation of S  (the 

Laplace scale parameter estimation in each 

mixture in each state). Estimation of the Laplace 

scale parameter can be derived by differentiating 

the auxiliary function of (6) with respect to scale 

parameter resulting in (7). 
1

1

1 1 1 1
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(7) 

In the above-mentioned equations, (j)n  is the 

probability of being in state j at time n, ( , )n i j  is 

the transition probability of state i at time n to 
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state j at time n+1, and ( | )ICA jp S   is obtained 

using (4) and (5), where ( )j k equals the scale 

parameter of the k
th
 dimension in state j (

,( )j j kk b  ). 

 

2.2. Noise model 

In this work, we assumed that DICA had a 

multivariate Gaussian distribution. In other words, 

if we use (3) and (5) for each mixture in each 

state, then we can estimate the model parameters 

of 
D  using the Baum’s auxiliary function. 

Therefore, estimation of 
,D M N L  

 in model 
D , 

can be interpreted as estimation of the diagonal 

covariance matrix (
D ) for each mixture in each 

state. This means that the main diagonal of the 

covariance matrix contains the variances for each 

independent dimension. 

 

3. Map estimation 

In this section, we present the MAP estimation 

based on the Hidden Markov model that in the 

ICA space. We assumed, that the speech 

distribution was non-Gaussian, and that the noise 

distribution was Gaussian. Studies have shown 

that the proposed framework under the 

assumption that the signal is non-Gaussian and the 

noise is Gaussian leads to a sparse code shrinkage 

[11], which we called the SCS-HMM technique. 

Let ts  be an L-dimensional vector of the clean 

speech. Similarly, let td  be an L-dimensional 

vector of the noise. Assume that the noise is 

additive and statistically independent of the 

speech. Let t t ty s d   be an L-dimensional 

vector of the noisy speech. Let 
0 { ; 1: }T

ts s t T  , 

0 { ; 1: }T

td d t T  , and 
0 { ; 1: }T

ty y t T  . The 

MAP estimation of clean speech ts , given as 
0

Ty , 

is obtained by maximizing 
0p( | )T

ts y  over ts . 

Therefore, we applied the EM algorithm for the 

iterative local maximization of 
0p( | )T

ts y . 

In this method, at each iteration, the auxiliary 

function is maximized in (8), 
1 1

,

( ) ( , | ) ln ( , , | )k k k

t t t t

q u

Q s p q u s p q u s y 

   (8) 

where, 
k

ts  and 
1k

ts 
 denote the estimate of ts  as 

obtained in the kth and k+1th iteration, 

respectively. Maximization of 1( )k

tQ s   over 1k

ts   

results in an estimate for which 

1ln ( | ) ln ( | )k k

t t t tp s y p s y  , where equality 

holds if and only if 
1k k

t ts s  . 

Maximization of (8) results in the following signal 

re-estimation formula: 

1

1 1

,

arg max ( , | ) ln ( , , | )
k
t

k k k

t t t t
s q u

s p q u s p q u s y 


  
 

1

1

,

( , | )arg max(ln ( , , , ))
k
t

k k

t t t
sq u

p q u s p q u s y 



 

1

1

,

( , | )arg max(ln ( , , | ))
k
t

k k

t t t
sq u

p q u s p q u s y 


  

(9) 

 

where, 
1 1 1( , , , ) ( | , , ) ( , , )

s d s d s

k k k

t t t t tp q u s y p y q u s p q u s    

  
 

1 1 1 1( | ) ( , , ) ( ) ( , , )
d s d s

k k k k

t t t t t tp y s p q u s p y s p q u s   

       

(10) 

 

On substituting (10) into (9), we obtained the 

following formula: 
1

,

( , | ).k k

t t

q u

s p q u s

 

1

1 1arg max(ln ( ) ln ( , , ))
d s

k
t

k k

t t t
s

p y s p q u s 


    

(11) 

For a Gaussian distributed noise, the term 
1ln ( )

d

k

t tp y s

  in (11) has no extremum. 

Therefore, the maximization in (11) is decided 

only by the term 
1ln ( , , )

s

k

tp q u s


. In order to 

estimate the clean signal in the ICA space, we 

used the ICA unmixing matrix sw , obtained from 

the training phase. Thus, the estimate of signal s  

can be obtained by letting d sw w . For clarity of 

presentation, we denoted sw  by w . In this case, 

the MAP estimation rule from (11) can be 

expressed in the form of: 

1 1

.

, 1

( , | . )arg max( (ln ( ( - ))
d

L
k k k

t t l t t

q u l

s p q u w s p w y s 

 



 

1

.ln ( , , ( ))) 2ln | det( ) |)
s

k

l tp q u w s w

 
 

 

(12) 

where, . ( ,:)lw w l  denotes the lth row of matrix 

w . In (12), the conditional probability 

( , | . )k

tp q u w s  is calculated by the forward-

backward algorithm [12], and the second term of 

the above equation is calculated as follows: 

.

1

arg max( ln ( ( ))
d

t

L

t l t t
s l

s p w y s


 

.ln ( , , ( ))) 2ln | det( ) |)
s l tp q u w s w 

 
 

(13) 

We can perform the estimation in the independent 

space first, and then transform the estimate 

obtained into the original space. Denote .l tw y  as 

( )tz l  and .l tw s  as ( )tx l . Thus the components of 
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vector 
tx  can be calculated by the equations (14) 

and (15): 

(1)

( )

( )

t

t t

t

x

x x l

x L

 
 
 
 
 
 
  

 

(14) 

 

( ) arg max(ln ( ( ) ( )) ln ( ( ) | , ))
d st t t t

x

x l p z l x l p x l q u   

2 |

2

1
arg min( ( ( ) ( )) ( ( ))

2

u q

t t t
x

z l x l f x l


    

(15) 

where, | ( ( ) ln ( ( ) | , )
s

u q

t tf x l p x l q u  . The 

minimization is equivalent to solving the 

following equation: 

|

2

1
( ( ) ( )) ( ( )) 0u q

t t tx l z l f x l


    
(16) 

Although (16) may not have a closed form 

solution, the estimation function can be 

approximated as follows [13]: 

2

|

1
( ) ( ( ))max(0,| ( ) | )t t t

u q

x l sign z l z l
b

   (17) 

 

In the above equation, 
|u qb  is the scale parameter 

of the fourth mixture in the qth state. The 

estimation rule in (17) is known as the sparse code 

shrinkage estimation [11]. Given the two words 

p ( , | . )k

tq u w s  and 

 
. .

1

arg max(ln ( ( )) ln ( ( ) | , ))
d s

L

l t t l t
xl

p w y s p w s q u 


  , 

we can estimate the clean signal component by 

(11). 

 

4. Summary of the proposed SCS-HMM 

algorithm 

This section provides a summary of the steps 

involved in the proposed SCS-HMM 

enhancement algorithm, as described in Sections 2 

and 3. 

1. First, using two sets of data s  and d , which 

should have the same statistical properties as the 

noise d and signal s, calculate the ICA 

transformation matrices dw  and sw . This can be 

performed using any of the existing ICA 

algorithms. 

2. Train HMM using the independent components 

ICA sS w s  and 
ICA dD w d , as described in 

Sections 2.1 and 2.2, respectively. 

3. To perform the enhancement process of the 

observed noisy signal y, we applied the estimation 

rule (11) to estimate the clean speech ŝ . 

 

5. Experimental evaluation 

The objective evaluation of AR-HMM, LaGa-

HMM, and the proposed algorithm was performed 

in terms of the SNR and PESQ measures. The 

experimental evaluation was performed using the 

speech signals selected from the TIMIT database, 

separately for each gender. The training set 

contained 100 sentences for each gender, and the 

testing set contained the sentences of the speaker 

female and male. There were no common 

sentences between the training and test sets. The 

noisy speech signals were created by adding 

different noises such as the white, babble, and 

machinegun noises at 0 db, 5 db, and 10 db. All of 

the signals were sampled at 8 kHz. The signals 

were split into frames of 64 samples using the 

rectangular window. The fast-ICA algorithm [14] 

was employed to estimate the ICA basis functions 

based on the training set. In the training phases of 

the various models, there was no inter-frame 

overlap. The clean speech models were generated 

using 10 states and 30 mixtures. In AR-HMM and 

LaGa-HMM, the noise models were constructed 

based on 4 states and 4 mixtures. Due to the use of 

MAP estimation in the SCS-HMM method, the 

noise model was generated using 1 state and 1 

mixture. In AR-HMM, we used an AR-order of 10 

for a clean speech and noise. The fast-ICA 

algorithm was employed to estimate the ICA basis 

functions based on the training data. The 

performance of the proposed algorithm SCS-

HMM was compared with AR-HMM in [12], and 

LaGa-HMMDCT in [8]. Tables 1 and 2, 

respectively, demonstrate the SNR and PESQ 

values achieved by AR-HMM, LaGa-HMMDCT, 

and SCS-HMM. The results obtained confirm the 

superiority of the SCS-HMM method in the 

presence of non-stationary noises compared to 

LaGa-HMMDCT based on the SNR measure. The 

results of the SCS-HMM method represent a 

better performance of this method, compared to 

AR-HMM, in the presence of white noise based 

on the PESQ measure. 

This result is expected, because the MAP method 

is constructed based on stationary noises such as 

the white noise. For this reason, the performance 

of the SCS-HMM method is better than AR-

HMM in the presence of white noise based on the 

PESQ measure. However, improvements in SNR 

results were not observed. An example of clean, 

noisy, and enhanced speech spectrograms are 

depicted in figure 1. Using the spectrogram 
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representation, it can be seen that the SCS-HMM result is close to the original clean signal. 

Table 1. Comparative performance in terms of SNR. 

Enhancement algorithm 

Babble noise White noise Machinegun noise 

0dB 5dB 10dB 0dB 5dB 10dB 0dB 5dB 10dB 

M
a

le 

AR-HMM 8.73 11.34 14.53 5.42 8.60 11.56 8.73 11.34 14.23 

LaGa-HMMDCT 7.96 10.55 13.67 4.24 7.17 10.70 7.63 9.08 10.93 

SCS-HMM 8.59 10.89 13.79 5.34 8.34 11.49 7.36 9.24 11.53 

F
e
m

a
le 

AR-HMM 6.37 9.44 12.87 7.29 9.74 12.43 10.35 13.34 16.14 

LaGa-HMMDCT 5.41 7.75 11.57 6.93 9.06 11.16 7.92 9.63 12.10 

SCS-HMM 6.22 8.42 12.20 7.22 9.56 12.03 8.91 10.29 12.58 

 

Table 2. Comparative performance in terms of PESQ. 

Enhancement algorithm 

Babble noise White noise Machinegun noise 

0dB 5dB 10dB 0dB 5dB 10dB 0dB 5dB 10dB 

M
a

le 

AR-HMM 2.05 2.41 2.73 1.79 2.08 2.33 2.80 3.01 3.25 

LaGa-HMMDCT 1.75 2.24 2.59 1.76 2.03 2.30 2.62 2.93 3.08 

SCS-HMM 1.92 2.29 2.70 2.01 2.20 2.41 2.49 2.78 3.05 

F
e
m

a
le 

AR-HMM 1.86 2.13 2.46 1.66 1.90 2.15 2.72 3.02 3.31 

LaGa-HMMDCT 1.64 2.08 2.38 1.56 1.85 2.09 2.60 2.85 3.23 

SCS-HMM 1.71 2.10 2.44 1.70 1.90 2.23 2.47 2.80 3.14 

 

6. Conclusion 

In this paper, we presented a new HMM-based 

speech enhancement framework based on the 

independent component analysis (ICA). 

Furthermore, a MAP estimator was derived for the 

ICA coefficients of a clean speech. It was also 

shown that the proposed framework under the 

assumption of the signal being Laplace 

distribution and noise being Gaussian distribution 

led to sparse code shrinkage, called the SCS-

HMM technique. The evaluation results, in terms 

of SNR and PESQ, indicated the superiority of the 

SCS-HMM method in the presence of non-

stationary noises, compared to LaGa-HMMDCT. 

The results of the SCS-HMM method represented 

a better performance of this measure. The 

performance of SCS-HMM in the presence of 

other noise types based on PESQ and in the 

presence of all noises based on SNR showed 

slightly inferior performance of this method. 

Original data

 

Noisy data

 

AR-HMM output

 

LaGa-HMMDCT

 
SCS-HMM

 

 

Figure 1. Spectrograms of female speech corrupted by white 

noise at SNR=5 dB. 
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  و حسین صامتی *الهام گلرسان
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 چکیده:

بدرای   مراحدل تحلیدل  کندد ارائه می (ICA)و مبتنی بر تحلیل مؤلفه مستقل  یک چارچوب جدید برای بهسازی گفتار با مدل مخفی مارکوف این مقاله

گوسی )بده ترتیدب -توزیع لاپلاس ترکیب مبتنی بر MAPگر شود و یک تخمینارائه میهای گفتار و نویز با استفاده از روش بازتخمین باوم آموزش مدل

روش پیشدنهادی روی  شدود پیشدنهاد مدی SCS-HMMدر ساختار مبتنی بر مدل مخفی مدارکوف تحدع وندوا   تمیز و نویز( گفتار هایبرای سیگنال

 و AR-HMMگیرد و بدا دو روش خروجی مورد ارزیابی قرار می SNRو  PESQورودی با معیارهای  SNRبا سه نوع نویز در سه مقدار  TIMITدادگا  

دسدع نتایج به شود مقایسه می DCTHMM-(LaGa(های لاپلاس و گوسی روش بهسازی برپایه ضرایب تبدیل کسینوسی گسسته با استفاده از توزیع نیز

وملکرد بهتدر ایدن  HMM-SCSهمچنین نتایج  اسع  DCTHMM-LaGa در حضور نویزهای ناایستا  نسبع به HMM-SCSدهنده برتری آمده نشا 

 دهد نشا  می PESQرا در حضور نویز سفید با معیار  AR-HMMروش نسبع به 
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