Journal of Al and Data Mining
Vol 4, No 2, 2016, 213-218

10.5829/idosi.JAIDM.2016.04.02.09
Speech enhancement based on hidden Markov model using sparse code
shrinkage

E. Golrasan™ and H. Sameti

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Received 19 August 2015; Accepted 31 May 2016
*Corresponding author: egolrasan@yahoo.com (E. Golrasan).

Abstract

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework
based on the independent component analysis (ICA). We propose analytical procedures for training clean
speech and noise models using the Baum re-estimation algorithm, and present a maximum a posteriori
(MAP) estimator based on the Laplace-Gaussian (for clean speech and noise, respectively) combination in
the HMM framework, namely sparse code shrinkage-HMM (SCS-HMM).

The proposed method on the TIMIT database in the presence of three noise types at three SNR levels in
terms of PESQ and SNR are evaluated and compared with Auto-Regressive HMM (AR-HMM) and speech
enhancement based on HMM with discrete cosine transform (DCT) coefficients using the Laplace and
Gaussian distributions (LaGa-HMMpcr). The results obtained confirm the superiority of the SCS-HMM
method in the presence of non-stationary noises compared to LaGa-HMMpcr. The results of the SCS-HMM
method represent a better performance of this method compared to AR-HMM in the presence of white noise
based on the PESQ measure.

Keywords: Speech Enhancement, HMM-based Speech Enhancement, Multivariate Laplace Distribution,

Independent Component Analysis (ICA transform), Sparse Code Shrinkage Enhancement Method.

1. Introduction

Speech enhancement aims to improve speech
quality using various algorithms. Enhancing
speech degraded by noise, or noise reduction, is
the most important field of speech enhancement,
and is used for many applications such as mobile
phones, VoIP, teleconferencing systems, speech
recognition, and hearing aids.

Among the different proposed solutions, the
statistical approach in speech enhancement is
often preferred due to the stochastic nature of
speech signals [1]. Generally, the statistical
methods are divided into the model-based [2, 3]
and non-model-based [4, 5] techniques. In the
model-based procedures, the clean speech and
noise models are first generated in a training
phase, and then the clean speech is estimated
based on this prior information in a test phase.
The non-model-based procedures only consist of
the test phase, and the required information is
estimated using the noisy speech. Under the non-
stationary noisy conditions, the model-based

techniques have advantages over the non-model-
based techniques through prior information [3].
Hidden Markov Model (HMM) is one of the
powerful model-based methods applied to speech
enhancement and has resulted in high efficiency,
especially under non-stationary noisy conditions
[2]. One of the most important factors that
influences the model precision of an HMM s the
probability density function (pdf) of clean speech,
noise, and noisy speech. In the HHM-based
speech enhancement, the Gaussian pdf is used to
model clean speech and noise, while the recent
studies [4,6,7] have shown that clean speech and
noise pdf are non-Gaussian distributions. The
multivariate Laplace distribution has been
recommended for modeling HMM as a non-
Gaussian distribution [8]. In this modeling, using
multivariate Laplace distribution causes a non-
closed form formula. To solve this problem, it was
assumed that the DCT coefficients were
statistically independent, whereas DCT only
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reduces the correlation between the coefficients,
and they are not completely uncorrelated to each
other. If we assume that the DCT coefficients are
uncorrelated to each other and that the distribution
of coefficients is Laplace, we cannot assume that
the coefficients are statistically independent. If we
use independent component analysis (ICA)
instead of DCT, whose coefficients are greatly
statistically independent from each other, we can
do a more accurate statistical modeling.

We modeled the clean speech signal using HMM
in ICA domain with Laplace distribution, while
doing the noise modeling only by assuming
Gaussian pdf for noises. In this work, we propose
a novel MAP HMM-based speech enhancement
algorithm that uses the ICA transformation. Our
theoretical analysis shows that wunder the
assumption of Laplace clean speech and Gaussian
noise, the proposed algorithm leads to a well-
known enhancement technique, sparse code
shrinkage. This paper is organized as follows. In
Section 2, the HMM training methods are
reviewed. In Section 3, the MAP estimator is
derived based on HMM in the ICA space. In
Section 4, a summary of the proposed algorithm is
given. In Section 5, we present the experimental
evaluation and results, and in Section 6, the
conclusions are given.

2. Signal model

Assume a time-domain noisy speech vector y, at
time n that is composed of a clean speech vector
s, and an additive noise vector d, given as (1).
Taking the independent component analysis (ICA)
of y,, we get (2) in this equation. We assumed that
noise is independent from clean speech, and that
the vectors have the length L and a zero mean.
The AR features of P" order a,=/1,a(1),....a(p)]
for s,=/s(0),s(1), ...,s(L-1)] could be derived by
the linear predictive coefficient approach [9], and
the AR coefficients of other signals are obtained
analogously.
y =s, +d 1)
Yica =Sica + Dica (2)
An HMM with M states and N mixtures is defined
as A= (8. Coin s Ot ) s Where 7z is
the initial state distribution, a denotes the state

transition probability distribution, ¢ is the
probability distribution for each mixture in each

state, and S, IS the matrix of pdf parameters

in each mixture. The parameters of A4 are
estimated by the Baum re-estimation formulas
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[10]. In order to estimate clean speech from noisy
signal, it is necessary to construct the HMM

models for clean speech (As) and noise (A,)
separately, and then combine them to create the
noisy HMM (4, ).

2.1. Speech model

Based on the central limit theorem, we can
assume that S,., has a multivariate Gaussian pdf
with independent coefficients according to (3) and
(5). In these equations, index k shows the k™ ICA
coefficient of an L-dimensional vector.

As shown in [6], the Laplace distribution function,
compared to the Gaussian distribution function, is
closer to the speech signal distribution in different
domains, and thus we can consider the distribution

of vector S,., as a multivariate Laplace pdf. We
know that the ICA coefficients are independent.
Therefore, the multivariate Laplace pdf of S, is
derived by (4) and (5), where by is the scale
parameter of the k™ coefficient. In these equations,
it is assumed that S,., has a zero mean.

= ’ 3
p(SICA(k))_\/_l k exp(— (SICA(ka)) ) ( )
il | ICA(k)| (4)

p(SICA(k)) 2b EXp( bk
)

p(SICA) = kll p(SICA(k))

We used (4) and (5) for each mixture in each
state, and estimated the model parameters of A

in closed form using the Baum’s auxiliary
function. In fact, changing Gaussian pdf to
Laplace pdf in each HMM mixture modifies the

equations for parameter estimation of &g (the

Laplace scale parameter estimation in each
mixture in each state). Estimation of the Laplace
scale parameter can be derived by differentiating
the auxiliary function of (6) with respect to scale
parameter resulting in (7).

QA L) =Y 7))+ > > > &, 1) nGy)

j=1 n=1i=1 j=1

T-1M i (6)
+2. 27N S cal9))

n=l j=1
) 37,05
b, = aiQ e @)

b 27 ()
n=1

In the above-mentioned equations, ¥,(j) is the
probability of being in state j at time n, &, (i, j) is

the transition probability of state i at time n to



Golrasan & Sameti/ Journal of Al and Data Mining, Vol 4, No 2, 2016.

state j at time n+1, and p(S,c, | ¢,;) is obtained

using (4) and (5), where @, (k)equals the scale

parameter of the k™ dimension in state j (
(Pj(k)=bj,k)-

2.2. Noise model

In this work, we assumed that D,ca had a
multivariate Gaussian distribution. In other words,
if we use (3) and (5) for each mixture in each
state, then we can estimate the model parameters
of 4, using the Baum’s auxiliary function.

Therefore, estimation of s .~ in model 4,
can be interpreted as estimation of the diagonal
covariance matrix (X ) for each mixture in each

state. This means that the main diagonal of the
covariance matrix contains the variances for each
independent dimension.

3. Map estimation

In this section, we present the MAP estimation
based on the Hidden Markov model that in the
ICA space. We assumed, that the speech
distribution was non-Gaussian, and that the noise
distribution was Gaussian. Studies have shown
that the proposed framework under the
assumption that the signal is non-Gaussian and the
noise is Gaussian leads to a sparse code shrinkage
[11], which we called the SCS-HMM technique.

Let s, be an L-dimensional vector of the clean
speech. Similarly, let d, be an L-dimensional

vector of the noise. Assume that the noise is
additive and statistically independent of the

speech. Let Yy, =s,+d, be an L-dimensional
vector of the noisy speech. Let s] ={s,;t=1:T},
d, ={d;t=1:T}, and y; ={y;t=1:T}. The
MAP estimation of clean speech s, , given as yg ,
is obtained by maximizing p(s,|y;) over s,.
Therefore, we applied the EM algorithm for the

iterative local maximization of p(s, |y, ).

In this method, at each iteration, the auxiliary
function is maximized in (8),
(8)

Q™ =2 p,@uls)Inp,(@.us™y,)
q,u

where, s and s denote the estimate of s, as

obtained in the kth and k+1th iteration,
respectively. Maximization of Q(s/*) over s
results in an estimate for which
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k+1

In p(s™ 1) =N psf 1y,

holds if and only if ¢ =s.

Maximization of (8) results in the following signal

re-estimation formula:
Sk+1 (9)

(" =argmax > p, (a,us)In p,(a,u,s7y)
S q,u

where  equality

=2 P, (@.uls)argmax(in p, (q.u.s™, y,)

q.u St

=2 p:(@.uls)argmax(in p,(a,u,s " | y,))

q,u St
where,
P, @U s Y) =P, (% lgus™
=p, (v 18P, (@u,s) =p,, (¥, -5

On substituting (10) into (9), we obtained the
following formula:

)p, (qus™)  (10)

k+1

)P, (@u,s™)

s<t=>"p.@.uls)). (12)
q,u

argmax(inp, (y, —s/™)+Inp, (@.u,s/™)

For a Gaussian distributed noise, the term

Inp, (y,—s*) in (11) has no extremum.
Therefore, the maximization in (11) is decided
only by the term Inp, (9,u,5"). In order to
estimate the clean signal in the ICA space, we
used the ICA unmixing matrix W, , obtained from
the training phase. Thus, the estimate of signal s
can be obtained by letting w, = w, . For clarity of
presentation, we denoted W, by w. In this case,

the MAP estimation rule from (11) can be
expressed in the form of:

L
5= 3 p, (@ w s )argmax(Y (np, (, (y, -5t
qu 1=1

+Inp, @.uw, (™)) +2In| detfw) )

) (12)

where, W, =Ww(l,:) denotes the Ith row of matrix
w. In (12), the conditional probability
p,(q.ulwsf) is calculated by the forward-

backward algorithm [12], and the second term of
the above equation is calculated as follows:

L (13)
s, =argmax(DInp, W, (y, -s,))

=1

St |

+Inp, (@,u,w, (s,)))+2In|detfw ) )

We can perform the estimation in the independent
space first, and then transform the estimate

obtained into the original space. Denote w, Y, as
z,(I) and w; s, as X (I). Thus the components of
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vector X, can be calculated by the equations (14)

and (15):

X (D) (14)
X =| %)

x (L)

x (1) =argmax(In p, (z,(1)-x (1)) +Inp, (x(1)]g,u)) (15)

= argxmin(riz(zt(l)—xt(l))z + £ (% (1)

where, fYx @) =-Inp, (x1)|qu). The
minimization is equivalent to solving the
following equation:

(16)

?(xt(l)—zt(w £ (x, (1)) =0

Although (16) may not have a closed form
solution, the estimation function can be

approximated as follows [13]:
x (1) = sign(z, (1)) max(0,| z (1) | - bi)

ulg

(17)

In the above equation, bu|q is the scale parameter

of the fourth mixture in the qgth state. The
estimation rule in (17) is known as the sparse code
shrinkage estimation [11]. Given the two words
p,(g,ufws) and

L

Y- argmax(In p, (w, (y, =s))+In p, (w, (s)|a,u))

1=1
we can estimate the clean signal component by
(12).

4. Summary of the proposed SCS-HMM
algorithm

This section provides a summary of the steps
involved in the proposed SCS-HMM
enhancement algorithm, as described in Sections 2
and 3.

1. First, using two sets of data § and d~, which
should have the same statistical properties as the
noise d and signal s, calculate the ICA

transformation matrices w, and w;. This can be

performed using any of the existing ICA
algorithms.
2. Train HMM using the independent components

Sea =W, and D, =w,d, as described in
Sections 2.1 and 2.2, respectively.
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3. To perform the enhancement process of the
observed noisy signal y, we applied the estimation
rule (11) to estimate the clean speech §.

5. Experimental evaluation

The objective evaluation of AR-HMM, LaGa-
HMM, and the proposed algorithm was performed
in terms of the SNR and PESQ measures. The
experimental evaluation was performed using the
speech signals selected from the TIMIT database,
separately for each gender. The training set
contained 100 sentences for each gender, and the
testing set contained the sentences of the speaker
female and male. There were no common
sentences between the training and test sets. The
noisy speech signals were created by adding
different noises such as the white, babble, and
machinegun noises at 0 db, 5 db, and 10 db. All of
the signals were sampled at 8 kHz. The signals
were split into frames of 64 samples using the
rectangular window. The fast-ICA algorithm [14]
was employed to estimate the ICA basis functions
based on the training set. In the training phases of
the various models, there was no inter-frame
overlap. The clean speech models were generated
using 10 states and 30 mixtures. In AR-HMM and
LaGa-HMM, the noise models were constructed
based on 4 states and 4 mixtures. Due to the use of
MAP estimation in the SCS-HMM method, the
noise model was generated using 1 state and 1
mixture. In AR-HMM, we used an AR-order of 10
for a clean speech and noise. The fast-ICA
algorithm was employed to estimate the ICA basis
functions based on the training data. The
performance of the proposed algorithm SCS-
HMM was compared with AR-HMM in [12], and
LaGa-HMMpcr in [8]. Tables 1 and 2,
respectively, demonstrate the SNR and PESQ
values achieved by AR-HMM, LaGa-HMMpc,
and SCS-HMM. The results obtained confirm the
superiority of the SCS-HMM method in the
presence of non-stationary noises compared to
LaGa-HMMpcr based on the SNR measure. The
results of the SCS-HMM method represent a
better performance of this method, compared to
AR-HMM, in the presence of white noise based
on the PESQ measure.

This result is expected, because the MAP method
is constructed based on stationary noises such as
the white noise. For this reason, the performance
of the SCS-HMM method is better than AR-
HMM in the presence of white noise based on the
PESQ measure. However, improvements in SNR
results were not observed. An example of clean,
noisy, and enhanced speech spectrograms are
depicted in figure 1. Using the spectrogram
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representation, it can be seen that the SCS-HMM

result is close to the original clean signal.

Table 1. Comparative performance in terms of SNR.

Babble noise White noise Machinegun noise
Enhancement algorithm
0dB 5dB 10dB 0dB 5dB 10dB 0dB 5dB 10dB
AR-HMM 8.73 11.34 14.53 5.42 8.60 11.56 8.73 11.34 14.23
§ LaGa-HMMpcr 7.96 10.55 13.67 4.24 7.17 10.70 7.63 9.08 10.93
@
SCS-HMM 8.59 10.89 13.79 5.34 8.34 11.49 7.36 9.24 11.53
AR-HMM 6.37 9.44 12.87 7.29 9.74 12.43 10.35 13.34 16.14
n
3 LaGa-HMMpcr 541 7.75 11.57 6.93 9.06 11.16 7.92 9.63 12.10
=
@
SCS-HMM 6.22 8.42 12.20 7.22 9.56 12.03 8.91 10.29 12.58
Table 2. Comparative performance in terms of PESQ.
Babble noise White noise Machinegun noise
Enhancement algorithm
0dB 5dB 10dB 0dB 5dB 10dB 0dB 5dB 10dB
AR-HMM 2.05 241 2.73 1.79 2.08 2.33 2.80 3.01 3.25
§ LaGa-HMMpcr 1.75 2.24 2.59 1.76 2.03 2.30 2.62 2.93 3.08
@
SCS-HMM 1.92 2.29 2.70 2.01 2.20 241 2.49 2.78 3.05
AR-HMM 1.86 2.13 2.46 1.66 1.90 2.15 2.72 3.02 3.31
N
e LaGa-HMMpcr 1.64 2.08 2.38 1.56 1.85 2.09 2.60 2.85 3.23
=
® SCS-HMM 171 2.10 244 1.70 1.90 2.23 247 2.80 3.14
6. Conclusion Original data Noisy data

In this paper, we presented a new HMM-based
speech enhancement framework based on the
independent  component  analysis  (ICA).
Furthermore, a MAP estimator was derived for the
ICA coefficients of a clean speech. It was also
shown that the proposed framework under the
assumption of the signal being Laplace
distribution and noise being Gaussian distribution
led to sparse code shrinkage, called the SCS-
HMM technique. The evaluation results, in terms
of SNR and PESQ, indicated the superiority of the
SCS-HMM method in the presence of non-
stationary noises, compared to LaGa-HMMpcr.
The results of the SCS-HMM method represented
a better performance of this measure. The
performance of SCS-HMM in the presence of
other noise types based on PESQ and in the
presence of all noises based on SNR showed
slightly inferior performance of this method.
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Figure 1. Spectrograms of female speech corrupted by white
noise at SNR=5 dB.
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