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Abstract 
There are two methods for identifying formation interface in oil wells: core analysis, which is a precise 
approach but costly and time consuming, and well logs analysis, which petrophysists perform, which is 
subjective and not completely reliable. In this paper, a novel coupled method was proposed to detect the 
formation interfaces using GR logs. Second approximation level (a2) of GR log gained from optimum mother 
wavelet decomposition was used for formation interface detection. Short time Fourier transform (STFT) of a2 
was gained since the window band was fixed in the entire of well depths. Inverse STFT of various windows 
of transformed data was gained, which creates various signals in depth domain. To this end, a novel 
formulation was developed to obtain modified signal for formation interface detection. The mean of various 
resulted signals creates a smooth signal the logarithm well of which highlights formation interfaces. 
Synthetic data were used to test the applicability of proposed algorithm. Accordingly, GR logs corresponding 
to five different wells located in an oilfield in south of Iran also were used to investigate the accuracy and 
applicability of the proposed method. Lastly, the validation process took place by comparing the results of 
core data analysis and the proposed method. Good agreements were obtained between these approaches, 
demonstrating the applicability of the proposed methodology. 
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1. Introduction 

Formation interfaces detection is one of the 

principal tasks in reservoir rock boundary 

identification of oil wells. Generally, there are two 

customary methods for formation interface 

identification: core data analysis [7] and well logs 

interpretation [5, 7] both of which suffer from a 

few shortcomings. It should be mentioned that 

seismic data are useful tool for formation interface 

identification [1], but in comparison with the core 

and log data, their resolution is too low. 

First attempts to detect formation interface using 

well logs was done in 1983 [9]. They applied 

Walsh transform on well logs and proposed a 

methodology which discriminated formation 

interfaces. Of course, their method was unable to 

detect the interface of thin layered interfaces. 

Later, an automated method was developed to 

detect lithology boundaries using Walsh 

transform, which increased the resolution of 

interface detection [10]. Few researchers have 

tried to utilize wavelet instead of Walsh 

transform, because of its localization properties. 

For example, wavelet transform was applied to SP 

and GR logs, and coefficients were used for 

stratigraphic formation interface identification 

[13]. They also developed a combined wavelet-

Fourier transform method, which was sensitive to 

location and size of frequency bands. They 

introduced unique frequency bands for formation 

boundaries detection based on wavelet transform 

of SP and GR logs. Moreover, other approaches 

were also proposed for formation boundaries 

detection. Among them, Hsieh et al (2008) 
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developed a fuzzy logic algorithm, which applied 

to aquifer well logs for lithology identification. 

The most commonly used log in interface 

detection algorithms is GR. As it has been 

confirmed, GR is a well known log which is 

highly affected by lithology variations and almost 

is available in majority of oil wells. Therefore, the 

methodology which uses GR log for formation 

interface detection is a wide spread technique. 

In this paper, a novel combined approach is 

presented which employs only GR log for 

identification of formation boundaries. The 

proposed approach is an extension to the 

algorithms introduced by Miati and Tiawari 

(2005) and Pan et al (2008). They have 

considered GR as a signal which represents the 

specific energy corresponding to any formation. 

Signal processing techniques, e.g. signal 

transformation and filtering were the approaches 

they used for formation interface detection. In this 

work, wavelet and Fourier transform (FT) were 

used to solve the mentioned issue. The 

applicability of the proposed methodology was 

investigated using the analysis of synthetic data 

and GR logs of five wells in an oilfield located in 

south of Iran. 

2. Methodology 

In the present study, four different techniques 

were used for signal processing of GR log and 

formation interface detection. They are explained 

briefly in the following sections. 

2.1. Short time Fourier transform 

GR well logs can be processed as discrete signals 

and transformed into another domain, depending 

upon the kernels used [14]. Perhaps the most well 

known signal processing method is FT, which 

breaks down a signal into constituent sinusoids of 

different frequencies [12]. For stationary signals, 

it is an optimal method to analyze the frequency 

content [8], while for non-stationary signals, a 

transformation method with time resolution 

capability is needed. STFT is a Fourier-related 

transform used to determine the sinusoidal 

frequency and phase content of local sections of a 

signal as it changes over location [13]. 

The discrete STFT  )t(xSTFT  of a non-periodic 

signal )n(x  is defined by Eq. 1 [8]: 
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where nje  is Fourier orthogonal function, and 

)mn(   is window function. The STFT is 

adapted to signals from real applications, which 

always have finite length. 

2.2. Wavelet transforms 

Wavelet transform was developed with the 

localization idea from Gabor’s Short-Time 

Fourier analysis and has been expanded further. 

Wavelets provide the ability to perform local 

analysis [4]. 

The following equation defines a discrete wavelet 

transformer (DWT) of a signal x(z) [3, 11, 6]: 
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This function transforms signal x(z) using mother 

wavelet )z(  from the depth domain (z) to scale 

(s) domain with translation (τ). In equation (2), 

z  is the depth translation. The term (√| |)-1 
is 

a normalization factor for removingthe scale 

effect from wavelets with different scales. 

In wavelet analysis, a signal decomposes to 

approximations and details coefficients; 

approximations are the high-scale, low-frequency 

components of the signal and details are the low-

scale, high-frequency components [12]. Figure 1 

shows the procedure of wavelet decomposition. 

 

 
 

Figure1. Schematic well logs wavelet decomposition stages 

[15]. 

2.3. Optimum mother wavelet selection 

There are various methods for optimum mother 

wavelet selection. In this study, an energy 

matching strategy has been used to choose 

optimum mother wavelets in order to analyze GR 

log data. In this strategy, GR log is first 

transformed from the depth–wavelength domain 

to frequency–wavelength domain using a FT to 

detect the dominant frequency bands. GR energy, 

which is equal to the sum of squared amplitudes 

in dominant frequency bands, is calculated in the 

identified dominant frequency bands. Then, GR is 

analyzed using different mother wavelets, and its 

energy in the identified dominant frequency bands 
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is calculated. The optimum mother wavelet is the 

one whose match between signal energy in 

dominant frequency bands and the signal energy 

obtained from FT (in similar frequency bands) 

becomes maximum [2]. 

2.4. Developed algorithm 

The following process defines the developed 

algorithm for formation interface detection in this 

study: 

a. Decompose GR log by optimum discrete 

mother wavelet in order to obtain Second 

approximation level (a2). a2 is selected 

based on a trial and error algorithm. 

b. Apply inverse wavelet transform to 

reconstruct a set of data from a2. In this 

stage, a denoised-smooth GR log will be 

constructed its depth resolution of which 

is the same as raw data. 

c. Take STFT of reconstructed data, in order 

to translateit to time-frequency domain in 

various windows. 

d. Choose certain frequency band of 

spectrum of the reconstructed data, and 

consider it as a new data set. 

e. Shift the frequency band and reply section 

d in the whole spectrum by equation 3: 

 

12 . f < Y < 12 . (f+q)  , x=0,1 ,2, . 

. . ,(F/12-q) 

(3) 

where f is the unit of frequency, F is the 

maximum GR frequency and q is an indicator 

of frequency band (window length as 

 42,q ). Result of equation 3 will be 

smoother for narrower window lengths; 

otherwise the resulted signal will be much 

noisy. It should be mentioned that equation 3 

is experimentally developed based on GR 

logs of five studied wells. 

f. Take the inverse STFT of each new data 

set, and translate them to time domain, 

and obtain modified reconstructed data. 

g. Take the average of absolute values of all 

modified reconstructed data to obtain 

average data. 

h. Take logarithm of average data which is 

the last modified data. 

The algorithm is abstracted as a flowchart (Figure 

2). 

3. Data 

In current study, the proposed methodology is 

applied to analyze the synthetic and real data; 

these are briefly explained under the following 

rubrics. 

3.1. Synthetic data 

Synthetic data are generated with the following 

simple constraints: 

a. Generate 10,000 data in the depth 

between 2300 and 3300 meters. Depth 

resolution is 10 cm and values of all data 

are equal to 10. 

b. Deduct 6 units from data in interval 2790 

and 3090 meters. This interval represents 

a clean carbonate formation. Other 

intervals represent shale formations. 

c. Generate and add white noises. In all the 

synthetic data, mean and variance of 

white noise are equal to zero and 0.25 

respectively (see Figure 3). 

Generate another similar synthetic log, in 

which a thin interval of shale with high GR (as 

triangle) is visible (Figure 4). 

3.2. Real data 

The proposed methodology was applied on GR 

log of five wells (Figure 5) in an oilfield located 

in south of Iran. Core analysis and geological 

interpretation indicate the existence of eight 

formations in the studied depths of selected wells. 

4. Results 

The results of the methodology applied to 

synthetic and real data are presented in the 

following secions. 

4.1. Synthetic data 

Semi smooth synthetic GR logs are shown in 

figures 6.a and 7.a. The interface detection 

method was applied on synthetic data and results 

are shown in figures 6.b and 7.b. As it can be seen 

in figure 6.b, in binary log, two resulted picks are 

fitted on two synthetic formation boundaries. The 

important point is that the shapes of the picks are 

similar to sink function. On the other hand, 

amplitudes of the carbonate formation in 

boundaries are maxima, while it is minima in the 

center of the formation. For Second log, as it can 

be seen in figure 7.b, a shortcoming is visible. The 

result shows just one major pick the fitness of 

which is acceptable with the middle of thin 

synthetic shale formation; while we expect the 

algorithm detects formation's boundaries. It 

should be mentioned that here, q (window length) 

is selected equal to two. 

4.2 Real data 

As mentioned previously, eight formations which 

affect the GR, are located within the studied wells. 

Therefore, the studied depths are heterogeneous. 
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In the first step, studied depths were divided into 

semi homogenous depths from the aspect of GR 

behavior in frequency domain and geological 

experience. Optimum mother wavelet in each 

homogenous section of the wells is selected 

separately (Table 1). 

FT was applied to GR log. Different frequency 

bands are considered to calculate the signal 

energy. The results are summarized in Table 2. In 

general, the signal frequency varies between 0 and  

5000 Hz in all wells. From table 2 it can be 

concluded that more than 98% of the information 

is hidden in low frequency bands (right column in 

Table 2). For example, in well 2, more than 99% 

of GR energy is hidden in the frequency band 1–

240 Hz (i.e. within less 5% of frequency range). 

Also in this well about 96% of signal energy is 

concentrated near zero frequency. Thus, it is not 

recommended that we search the GR information 

in high frequency bands. In this study, a2 of GR 

logs, which are determined based on final results, 

is used for formation interface detection. 

 

 

 
Figure 2. Flowchart of proposed methodology for formation interface detection. 
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Figure 3. Synthetic generated GR data No#1. 

 
Figure 4. Synthetic generated GR data No#2. 

 
Figure 5. GR logs and top of the formations in five studied wells. 

. 

 

 

 

 

 

 

 

 

 

Table 2. Signal energy percentage of GR log at low frequencies in five studied wells. 

Frequency band 1- 30 31-60 61-90 91-120 121-150 151-180 181-210 211-240 1 -240 

Well 1 96.7 0.68 0.48 0.23 0.26 0.20 0.17 0.20 98.94 

Well 2 96.08 0.88 0.59 0.39 0.43 0.28 0.23 0.21 99.11 

Well 3 96.9 0.69 0.21 0.33 0.21 0.19 0.14 0.12 98.85 

Well 4 96.40 0.61 0.72 0.43 0.34 0.31 0.24 0.21 99.27 

Well 5 96.81 0.76 0.49 0.32 0.30 0.29 0.17 0.13 99.29 

Table 1. Confine the zones distinct to identification optimum mother wavelets in five 

studied wells. 

Formation Well 1 Well 2 Well 3 Well4 Well5 

Section one (cap rock) ---- bior3.5 bior5.5 Bior3.3 Bior3.7 

Section two ( Ghar -upper Asmari) bior3.7 bior6.8 rbio6.8 rbio3.1 rbio3.9 

Section three( lower Asmari - Sarvak) coif3 dmey dmey bior5.5 dmey 

Section four ( Kazhdomi) rbio3.9 bior3.5 ---- ---- ---- 
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(a) 

 
(b) 

Figure 6. a) Synthetic GR data No.#1 b) The result of applying the methodology on synthetic data, which 

shows boundaries clearly. 

 

 
Figure 7. a) Synthetic GR data No.#2 b) The result of 

applying the methodology on synthetic data. 

 

Following process over data is: 

a.   Reconstructed GR signals are resulted 

from inverse wavelet transform of a2 

(figure 8). 

b. Spectrum of reconstructed signal is 

resulted from FT of reconstructed GR 

(figure 9). 

c. The window lengths chosen for studied 

wells are reported in table 3. 

d. Equation 3 is applied on spectrum to 

obtain the new series of data. 

 

e. Inverse FT is applied to all achieved 

new data. 

f. Modified signal is calculated by taking 

the logarithm of average absolute values 

in all modified reconstructed data, 

which is the final result. 

 

 
Figure 8. Reconstructed signal yield from inverse a2 of 

GR log of well 1. 
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Final results (Figures 10.a to 10.e) almost reveal 

the formation interfaces. Numerical results are 

listed in Table 4. As shown in Figure 10 and 

Table 4, the proposed methodology has a few 

shortcomings. For instance, it could not detect the 

top of the Sarvak formation which is probably due 

to the thinness of this formation. Of course, 

achieving the high resolution result is possible by 

increasing the window size.  

 

 
Figure 9. FT of reconstructed signal (figure 8). 

 

 

 

 

 

 

 
(a. well 1) 

 
(b. well 2) 

Table 3. Window length was obtained for five studied wells. 

 Well1 Well2 Well3 Well4 Well5 

Window length 4 2.5 4 3.5 2.6 
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(c. well 3) 

 

 
(d. well 4) 

 
(e. well 5) 

Figure 10. Modified signal of GR log and comparison between results and top of formation boundaries in a) well 1, b) well 2, 

c) well 3, d) well 4 and e) well 5. 
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Table 4. Numerical results and errors of formation interval detection algorithm for five studied wells. 

Top formations Depth (m) Well 1 Well 2 Well 3 Well 4 Well 5 

Top Ghar 

core 2309 2309 2290 2296 2298 

proposed algorithm 2303 2305 2305 2299 2295 

error 6 4 15 3 3 

Top Asmari 

core 2406 2403 2389 2390 2395 

proposed algorithm 2401 2406 2384 2400 2400 

error 5 3 5 10 5 

Top Jahrum 

core 2524 2530 2516 2514 2522 

proposed algorithm 2524 2526 2515 2512 2525 

error 0 4 1 2 3 

Top Jahrum-Pabdeh 

core 2645 ------- -------- -------- -------- 

proposed algorithm 2685 2712 2695 2700 2723 

error 40 0 0 0 0 

Top pabdeh 

core 2848 2866 2841 2840 2861 

proposed algorithm 2846 2865 2841 2840 2860 

error 2 1 0 0 1 

Top Gurpi 

core 2924 2943 2916 2912 2932 

proposed algorithm 2924 2943 2916 2912 2932 

error 0 0 0 0 0 

Top sarvak 

core 2943 2965 2934.7 2931.9 2954 

proposed algorithm Not found Not found Not found Not found Not found 

error      

Top Kazhdomi 

core 3110 -------- 3133 --------- -------- 

proposed algorithm 3113 -------- 3133 --------- -------- 

error 3 -------- 0 --------- -------- 

 

In this study, various approximation levels were 

checked and it was observed that the final results 

are almost similar. Of course, with increasing the 

level, amplitude of the boundaries will decrease, 

whereas the shapes of modified signals are almost 

fixed. Meanwhile, window length (q in equation 

3) is important in the proposed approach. By 

increasing the q, noise in modified signals 

increases, while the amplitude of boundaries 

remains unchanged. As a result, changing the 

decomposition level and window length partially 

affects the results. 

5. Conclusion 

In this paper, a new approach based on combined 

WT and STFT was proposed to analyze GR log 

data to identify formation interfaces. Core data 

and well logs interpretations were used to 

investigate the validation of the results. A 

comparison between the results and core analysis 

showed that the proposed methodology identifies 

formations interfaces precisely. 

The results also showed a shortcoming of the 

proposed methodology when the thickness of the 

formations is too small. If the thickness of the 

formation is less than spatial resolution, the 

modified signal cannot distinguish the formation 

interface. Later developments on this method will 

be considered to get rid of this shortcoming. 
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