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Abstract 

This paper proposes a scheme for daily activity recognition in sensor-based smart homes using Dempster-

Shafer theory of evidence. For this purpose, opinion owners and their belief masses are constructed from 

sensors and employed in a single-layered inference architecture. The belief masses are calculated using the 

beta probability distribution function. The frames of opinion owners are derived automatically for activities 

to achieve more flexibility and extensibility. Our method is verified via two experiments. In the first 

experiment, it is compared with a naïve Bayes approach and three ontology-based methods. In this 

experiment, our method outperforms the naïve Bayes classifier, having 88.9% accuracy. However, it is 

comparable and similar to the ontology-based schemes. Since no manual ontology definition is needed, our 

method is more flexible and extensible than the previous ones. In the second experiment, a larger dataset is 

used, and our method is compared with three approaches that are based on naïve Bayes classifiers, hidden 

Markov models, and hidden semi-Markov models. Three features are extracted from the sensors’ data and 

incorporated in the benchmark methods, making nine implementations. In this experiment, our method 

shows an accuracy of 94.2% that, in most cases, outperforms the benchmark methods or is comparable to 

them. 

 

Keywords: Activity Recognition, Dempster-Shafer Theory of Evidence, Smart Homes.  

1. Introduction 

With the rapid population ageing that is currently 

occurring across the world, the need for aged 

health care, and social and technology services 

will increase [1]. Studies show that elderly people 

would prefer to stay at home until it is impossible 

for them to do so, rather than move into a 

residential care [2], and that the benefits of home 

care are enormous, both to the individuals and to 

the state. Therefore, they must be able to do so 

safely at a reasonable cost. One possible solution 

is through the use of remote monitoring 

technologies, which can increase the level of 

security. Through automatically inferring human 

activities, care-givers can monitor the health and 

behavioral status of elderly people and provide 

them with essential services. 

A sensor network is an efficient tool for remote 

monitoring. Currently, a wide range of sensors 

including contact sensors, accelerometers, audio 

and motion detectors, to name but a few, are 

available for activity monitoring. Based on the 

way the sensors are deployed, the task of senor-

based activity recognition can be classified in two 

main categories: wearable sensor-based, and 

dense sensing-based activity recognition. 

Wearable sensors are positioned on human body 

and monitor features that depict the person’s state 

such as body position and movement, while in 

dense sensing-based activity recognition, sensors 

are attached to objects, and activities are 

monitored by detecting user-object interactions. In 

this work, we focus on the dense sensing-based 

activity recognition. 

The accuracy of an activity recognition process is 

affected by different levels and sources of 

uncertainty [3]. For instance, in [4-6], the 

uncertainty is considered to stem from both the 

sensor hardware failures and the probabilistic 
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nature of human activities. However, uncertainty 

may be due to other sources such as misplacement 

of sensors or modeling inefficacies [3]. Sensor 

data fusion techniques such as Dempster-Shafer 

theory provide a promising solution to mitigate 

the effect of uncertainty, especially when the 

inconsistency between sensor data is not very high 

[7]. Fusion techniques are required to combine 

data from multiple sensors in order to achieve 

more accurate inferences since data from a single 

sensor does not provide sufficient evidence to 

infer an activity  [8]. 

Several classification methods have been 

proposed for human activity recognition (HAR). 

They are categorized into three casts: data-driven, 

knowledge-driven, and hybrid methods based on 

their modeling schemes [9]. Among these, the 

Dempster-Shafer theory (DST) is known as an 

effective approach to deal with uncertainty and to 

fuse sensor data. DST can show better results in a 

reasoning scheme under unknown probability 

circumstances [10]. Approaches described in [4-

6], and [11-15] are instances in which DST is 

incorporated for HAR. They will be discussed in 

more detail in the next section. However, in these 

approaches, static ontology definitions for 

activities are made available manually, and 

activity recognition schemes are implemented 

accordingly. Manual ontology definition for 

activities might be a complicated and error-prone 

task in environments with unknown human 

activity patterns. 

In this paper, we introduce a novel method to 

extract the ontology definitions of activities of 

daily life (ADLs) automatically with the aim of 

using DST for HAR as a data fusion formalism. 

We propose a method to extract the frame of 

opinion owners (i.e. objects that have a degree of 

uncertainty, belief, and disbelief about an activity) 

for each activity automatically in order to 

accomplish this task. Opinion-owners are created 

from sensor nodes, and their belief masses for 

activities are calculated based on the beta 

probability distribution function, as represented in 

subjective logic [16,17]. The frame of opinion-

owners for each activity is determined based on 

their uncertainty, belief, and disbelief about that 

activity. Having a sequence of sensor activations, 

a set of triggered opinion owners is calculated, 

and their belief masses for possible activities are 

fused using the Dempster’s combination rule. 

Eventually, based on the fusion results, a decision 

is made about the happening activity. Two 

experiments are implemented to evaluate the 

performance of the proposed method. The 

proposed method is used to detect several 

activities within single resident environments. 

The remainder of the paper is organized as what 

follows. In section 2, we provide an analytic 

survey on the literature of the subject. The 

Dempster-Shafer theory of evidence is introduced 

in section 3. Section 4 and its sub-sections address 

the proposed activity recognition method. A work 

through example is illustrated in section 5. In 

section 6, simulation results are shown, and 

finally section 7 concludes the paper.  

 

2. Related works 

There is an intense research literature on the 

human activity recognition. Generally speaking, 

they can be classified into two main categories 

based on their activity modeling schemes. They 

are data-driven versus knowledge-driven activity 

recognition. A third emerging category, namely 

hybrid-methods has been introduced by 

researchers, which uses the characteristics of both 

previous methods [18,19]. 

Data-driven activity recognition is based on 

learning activity models from pre-existent datasets 

of resident’s behaviors using data mining and 

machine learning techniques. Probabilistic 

graphical models, frequent pattern mining-based 

approaches, and some other machine learning 

techniques such as the nearest neighbor classifiers 

(NN), decision trees, and support vector machines 

(SVM) are common instances of data-driven 

activity recognition methods. 

Probabilistic graphical models provide formal 

mechanisms for learning activity models, and 

inference. These models use a template graph 

structure to represent the dependencies among the 

observed random variables (sensor readings) and 

the unknown variables (activity labels). Given a 

sequence of observations, the template graph is 

unrolled, and the most likely sequence of 

unknown variables will be estimated using a 

formal inference method (e.g. Viterbi algorithm) 

[20,21]. Various types of such graphical models 

exist based on the characteristics of the template 

graph and the unrolling rules. Naive Bayes 

classifiers (NBCs)[22,23], Dynamic Bayesian 

networks (DBNs) [24,25], hidden Markov models 

(HMMs) [26-28], hidden semi-Markov models 

(HSMMs) [28,29], coupled HMMs (CHMMs) 

[30,31], conditional random fields (CRFs) 

[26,28,32,33], skip-chain CRFs (SCCRFs) 

[26,34], factorial CRFs (FCRFs) [31], latent 

dynamic CRFs (LDCRFs) [35], and some other 

variants of such models are common instances 

that have been used for HAR. For instance, in 

NBCs, only the dependency of the current sensor 
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observation with the hidden variables (activity 

labels) is modeled and temporal information is 

weakly supported; in HMMs and its variants, a 

directed acyclic graph (DAG) represents the 

temporal dependency of the current activity label 

(hidden variable) with the previous ones; in 

HSMMs, the duration of an activity (hidden state) 

is modeled explicitly by a duration variable; in 

CRFs and its variants, the unrolled graph is an 

undirected graph that captures the joint 

dependency of the activities; in SCCRF, skip 

chains are added to the unrolled graph based on 

some heuristics to model long range 

dependencies; and in FCRFs and CHMMs, there 

are more than one channel of inter-connected 

CRFs and HMMs, respectively, to infer 

concurrent activities. 

Frequent pattern mining approaches show 

promising performances when applied to HAR. 

Generally, such methods try to find frequent 

patterns throughout the sensor data stream for 

further interpretation as activities. The approaches 

of [36-38] are instances of such works, in which 

the concepts of emerging patterns [36] and 

compression [37,38] are used to unearth the 

frequent patterns. 

Among the other data-driven techniques, the K-

nearest neighbor (KNN), decision trees, and 

support vector machines (SVMs) are the common 

approaches that have been used for HAR. In 

KNNs, a new sequence of observations (e.g. 

sensor firings) is compared with a set of training 

sequences, and the k most closely matching 

sequences vote for the activity label [39]. In [39], 

it is also shown that the simple KNN approach is 

outperformed by decision trees. In [40] (and 

similarly, in [41]), a support vector machine 

(SVM) is used to classify the features that have 

been computed for fixed-length time 

frames/windows into daily activities. In [42], a 

one-class SVM is hired to recognize abnormal 

activities. Also in [43], SVM is used to classify 

the sensor events based on the features calculated 

out of a dynamic sliding window. 

In knowledge-driven activity recognition, activity 

models are directly acquired by exploiting a rich 

prior knowledge in the domain of interest using 

knowledge engineering and management 

technologies. This usually involves knowledge 

acquisition, formal modeling, and representation. 

Inference can also be done using the formal 

reasoning or statistical analysis. Approaches of 

[44] and [45] are instances in which the sensor 

activations in a period of time are mapped to pre-

defined static activity ontologies, and then a 

formal logical reasoning scheme is hired to infer 

the associated activities. The approaches of [46] 

and [47] are other instances of knowledge-driven 

methods, in which static ontologies are hired for 

HAR. However, in addition to static manual 

ontology definition, which can be an error-prone 

task due to insufficient or inefficient domain 

specific knowledge, another criticism about these 

approaches is that they manage uncertainty poorly 

[9,46]. 

There are also some hybrid approaches that try to 

benefit from the features of both data- and 

knowledge-driven HAR processes by fusing them 

in a single modeling approach. The works of [18, 

19] are instances of such methods. In [18], an 

ontology-based hybrid approach for activity 

modeling is proposed, where learning techniques 

are also developed to learn specific user profiles. 

The presented scheme is capable of learning 

descriptive properties of activities. In [19], an 

approach is proposed to use the data-driven 

techniques to evolve the knowledge-driven 

activity models with a user’s behavioral data. In 

these schemes, the ontologies will have a dynamic 

nature, although they do not consider uncertainty 

as a main concern. 

The above-mentioned activity recognition 

approaches do not consider the uncertainty as a 

key point in their procedures. Therefore, we aim 

at using DST, which can mitigate the uncertainty 

of sensor data by its data fusion facilities. Among 

HAR methods, the knowledge-driven approaches 

of [4-6], and [11-15] are instances that deal with 

uncertainty. In these methods, DST is hired for 

inference under uncertainty as follows. However, 

these approaches are also based on manual 

ontology definitions. 

In [4] and [5], the uncertainty is supposed to stem 

from sensor hardware errors and human activity 

variations. In [4], the belief masses of sensors 

about activities are calculated statistically and 

discounted by fixed rates. The sensors are mapped 

to activity ontologies, and then the discounted 

belief masses of temporally correlated triggered 

sensors are fused using DST to decide about the 

happening activity. This approach is named BDS 

throughout the paper, and is compared with our 

proposed method. In [5], a hierarchal lattice 

structure is proposed for activity inference. In this 

approach, the hierarchical lattice structure of the 

activity models is composed of three types of 

layers, namely object, context, and activity layers. 

The elements of each layer are connected to those 

of the next layer based on the ontology definition 

of the activity, and a weight factor is assigned to 

each connection, representing the uncertainty 

associated with their relation. Sensors are mapped 
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to the lattice structure, and the belief masses are 

propagated from the first to the last layer and 

combined using the Dempster’s combination rule. 

In this work, two variations of the architecture 

with two and three layers are implemented, which 

are called 2LDS and 3LDS, respectively, 

throughout the paper. Our proposed method is 

also compared with 2LDS and 3LDS in the 

experiments. In [6], the approach of [5] is 

improved by introducing a new weight factor 

method for the lattice-based evidential fusion. The 

approach of [14] is similar to that of [6], in that 

they are both based on layered lattice structures of 

activities that have been introduced in [5]. The 

difference is that in [14], an alternative weighting 

scheme is introduced, and the results are 

comparable to those provided in [5] and [6]. In 

[12], an approach similar to that of [5] is 

implemented. In this work, it is shown that by 

incorporating the Dempster’s combination rule, 

the more the evidences are available, the more 

confident decisions can be made. 

In [11], the activity model is represented using 

situation directed acyclic graphs (DAGs), which 

include temporal information as well. In this 

structure, the nodes in DAG are labeled with 

sensor IDs, context values, and activities. They 

are inter-connected in a layered style, and a 

weight factor is dedicated to each connection, 

representing the uncertainty of the relation. The 

activity duration and the absolute time (e.g. 

morning, afternoon) at which the activity usually 

takes place are also accommodated into DAG. To 

infer an activity, evidences are accumulated along 

the duration time of the activities, and their belief 

masses are fused using the Dempster’s 

combination rule. 

In [13], the Dempster-Shafer rules are changed to 

include temporal information in belief mass 

assignment and combination to recognize 

activities. However, this work makes use of 

contexts of activities in the form of directed 

acyclic graph as a prior knowledge. In [14], a 

mapping technique for converting the raw 

sensors’ data into a high-level activity knowledge 

is proposed, and a conflict resolution technique 

for the Dempster-Shafer theory is introduced to 

optimize decision-making. This work hires prior 

knowledge of activities in the form of directed 

acyclic graphs for belief propagation as well. 

As it can be seen, knowledge-driven methods that 

incorporate DST hire a static structure for each 

activity based on the activity ontology, map the 

installed sensors into that structure, and then use a 

fusion technique, i.e. the Dempster’s combination 

rule, to fuse the beliefs of pre-determined activity 

evidences, and decide about the happening 

activity. A criticism about these procedures is the 

generality of the ontology definitions and the 

complexities of deriving them, especially in 

situations with unknown activity patterns. Thus 

we propose a method to derive the evidences of 

activities in an automatic way, i.e. not based on 

predefined ontologies, fuse their beliefs via DST, 

and decide about the happening activity. 

 

3. Dempster-Shafer theory of evidence 
The Dempster-Shafer theory (DST) is a 

mathematical theory of evidence [10]. DST can 

combine evidences from different sources and 

arrive at a degree of belief (represented by a belief 

function) that takes into account all available 

evidences. 

In DST, a frame of discernment, called , is a 

domain of all possible elements of interest. Each 

proposition pertains to a subset of . A piece of 

evidence that supports one or more propositions 

can be expressed by a basic probability 

assignment (BPA) function 𝑚: 2[0 , 1] such 

that 𝑚(∅) = 0 and ∑ 𝑚(𝐴)𝐴 = 1, where ∅ is 

the empty set. The belief function can be 

expressed as follows: 

   
, 

 
A X X

Bel X m A
 

   (1) 

 

where, 𝐵𝑒𝑙(𝑋) represents the total degree of 

support for proposition 𝑋. Two BPAs, namely 

𝑚1 and 𝑚2, from two sources of evidence can be 

combined using the Dempster’s combination rule 

as: 
,

1 2

1 2
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0 0

i j
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m A m A if A
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where, 𝐾 is the inconsistency factor, which can be 

calculated as follows: 
,

1 2( ) ( ).
i j

i j

i jA A
K m A m A

 
   (3) 

The more 𝐾 is closer to 1, the more the evidences 

are conflicting. Equation (2) can also be used to 

combine more than two pieces of evidence, as in 

(4). The obtained result represents the effect of all 

pieces of evidence. 

1 1 2(( ) ).n nm m m m m       (4) 

4. Proposed activity inference structure 
The proposed method has two phases, namely the 

training phase and the inference phase. In the 

training phase, two tasks are accomplished using 

the training set: 1- opinion-owners are made out 
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of sensors and their BPAs are calculated, as 

described in sub-section 4.1, 2- based on BPAs, 

the frame of opinion-owners for each activity is 

extracted automatically, as explained in sub-

section 4.2. In the inference phase, two tasks are 

carried out as well: 1- having a sequence of 

triggered sensors, temporally-correlated sensors 

are extracted, as presented in sub-section 4.3, 2- 

the corresponding activity for each sequence of 

temporally-correlated sensors is inferred, as 

described in sub-section 4.4. 

In this work, we used the binary switch sensors. 

Whenever an activity happens, different sensors 

would be triggered from the start to the end of the 

activity. The sensors record and send their data to 

a base station for further processing. Their data is 

simply their IDs along with their activation and 

deactivation times. 
 

4.1. Opinion owners and their BPAs 

 Opinion-owners are the evidences that have a 

degree of uncertainty, belief, and disbelief about 

an activity. In the case of sensor-based smart 

homes, since the resident triggers a specific 

pattern of consecutive sensors for each activity, 

the sequences of sensors can testify about the 

activities. Therefore, ordered n-tuples (𝑛 =
1, … , 𝑑) of sensors are considered as opinion-

owners, and are shown within < ⋯ > signs, i.e. 

an n-tuple is composed of 𝑛 triggered sensors 

from the input sensor stream, ordered by their 

occurrence time. The sensor triggers are due to the 

resident’s activities. Given an input sensor stream, 

all n-tuples with lengths 𝑛 = 1, … , 𝑑 are extracted 

as opinion-owners, where 𝑑ℕ is a constant that 

is determined as a system design parameter. The 

belief, disbelief, and uncertainty of opinion-

owners can be calculated by beta distribution, as 

illustrated in [16]. These calculations are taken in 

the following for more clarification (i.e. Equations 

(5)-(11)). 

The posterior probabilities of binary events can be 

represented by the beta distribution [16]. The 

beta-family of density functions is a continuous 

family of functions indexed by the two parameters 

𝛼 and 𝛽. The beta distribution can be expressed 

using the gamma function, as follows: 
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where, (. ) is the gamma function,  0 ≤ 𝑝 ≤ 1, 

and ,  0, with the restriction that probability 

value 𝑝  0 if  <  1 and 𝑝  1 if  <  1. The 

expectation value of the beta distribution is given 

by: 

  .E p


 



 (6) 

For a binary event space, namely {𝑥, ~𝑥}, let 𝑟 

and 𝑠 denote the number of positive and negative 

past observations that support 𝑥 and ~𝑥, 

respectively. Let 𝑝 denote the probability of 𝑥 and 

𝑓 be a probability density function over the 

probability variable 𝑝. Having a prior uniform 

distribution over {𝑥, ~𝑥}, 𝑓 is characterized by 𝑟 

and 𝑠, as follows in (7) [16]. 

 
 

  
 

2
| , 1 .

1 1

sr
r s

f p r s p p
r s

 
 

 
  (7) 

Equation (7) is a beta distribution with 𝛼 = 𝑟 + 1 

and 𝛽 = 𝑠 + 1. Therefore, the expectation of 𝑝, 

named 𝐸(𝑝), can be obtained by substituting 𝛼  

and 𝛽 in (6), as follows: 
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For a binary event space, namely {𝑥, ~𝑥}, let 𝑏, 𝑑, 

and 𝑢 represent the belief, disbelief, and 

uncertainty about proposition 𝑥 such that 𝑏 + 𝑑 +
𝑢 = 1. The expectation of probability of 𝑥, named 

𝐸𝑥, can also be obtained by (9) [16], [17]. 

1
.

2
xE b u    (9) 

The values for 𝑏, 𝑑, and 𝑢 are derived by applying 

an equality between (8) and (9), i.e. 𝐸𝑥 and 𝐸(𝑝), 

with the restriction that 𝑏 + 𝑑 + 𝑢 = 1, as:  
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The solution of (10) is required to make 𝑏 an 

increasing function of 𝑟, and 𝑑 an increasing 

function of 𝑠, so that there is an affinity between 𝑏 

and 𝑟, and between 𝑑 and 𝑠 [16]. Also 𝑢 is 

required to be a decreasing function of 𝑟 and 𝑠 

[16]. By applying this affinity requirement, the 

solution of (10) will be: 
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Regarding the DST notations from the previous 

section, let 𝑚𝑂(𝐸) denote the BPA of opinion 

owner 𝑂 about event 𝐸 {𝑥, ~𝑥} for a binary 

event space {𝑥, ~𝑥}. Sub-set 𝐸 = {𝑥} denotes 

“event 𝑥 is happening”, 𝐸 = {~𝑥} denotes “event 

𝑥 is not happening”, 𝐸 = {𝑥, ~𝑥} stands for “we 

are uncertain on whether 𝑥 or ~𝑥 is happening”, 

and 𝐸 =  is considered as an impossible event, 

i.e. 𝑚𝑂() = 0. Furthermore, let 𝑟𝑥
𝑜 and 𝑠𝑥

𝑜 denote 

the number of past positive and negative 

observations of 𝑂 that support 𝑥 and ~𝑥, 

respectively. If 𝑏𝑥
𝑜, 𝑑𝑥

𝑜, and 𝑢𝑥
𝑜 represent the 

belief, disbelief, and uncertainty of opinion-owner 

𝑂 about happening of 𝑥, then the BPAs of 𝑂 are 

defined by substituting 𝑟 and 𝑠 in (11) for 𝑟𝑥
𝑜 and 

𝑠𝑥
𝑜, as follows: 

  

  

  

2

~ .
2

2
, ~

2

o
o x

O x o o

x x

o
o x

O x o o

x x

o

O x o o

x x

r
m x b

r s

s
m x d

r s

m x x u
r s


 

 


 
 


 

 

  
(12) 

It is clear that the equations in (12) are derived by 

substituting positive and negative observations 

(𝑟𝑥
𝑜 and 𝑠𝑥

𝑜) in the equations in (11), respectively. 

In the case of HAR, the frame of discernment for 

an activity, namely 𝑎, will be {𝑎, ~𝑎}, where 𝑎 

represents the occurrence of the activity and ~𝑎 

represents that the activity is not taking place. 

Consider 𝑚𝑂(𝐴) as the belief mass of opinion-

owner 𝑂 =< 𝑠1, 𝑠2, … , 𝑠𝑛 > for event 𝐴 {𝑎, ~𝑎}. 

Also let 𝑁(𝑂 , 𝑎) represent the number of times 

that the n-tuple of opinion-owner  𝑂 =<
𝑠1, 𝑠2, … , 𝑠𝑛 > has been a subsequence of the 

ordered triggered sensors for activity 𝑎 in the 

training set. If the happening of 𝑎 is considered as 

a positive and ~𝑎 as a negative observation, then 

the numbers of positive and negative observations 

of opinion-owner 𝑂 for activity 𝑎 are considered 

as 𝑟𝑎
𝑂 = 𝑁(𝑂 , 𝑎) and 𝑠𝑎

𝑂 = 𝑁(𝑂 , ~𝑎), 

respectively. Thus the BPAs of opinion-owner 𝑂 

for activity 𝑎 will be obtained directly by 

substituting 𝑟𝑥
𝑂, 𝑠𝑥

𝑂, and 𝑥 in (12) for  𝑟𝑎
𝑂, 𝑠𝑎

𝑂, and 

𝑎, respectively. The result obtained is shown in 

(13). 
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(13) 

4.2. Frame of opinion-owners 

Let 𝑆 denote an opinion-owner and 𝑎 denote an 

activity label. With the notations of (12) and (13), 

an opinion about activity 𝑎 can be represented by 

a triple (𝑏𝑎
𝑆, 𝑑𝑎

𝑆 , 𝑢𝑎
𝑆). Since 𝑏𝑎

𝑆 + 𝑑𝑎
𝑆 + 𝑢𝑎

𝑆 = 1, the 

domain of all opinions for 𝑎 can be shown by the 

equilateral triangle of figure 1. This triangle is 

introduced as opinion triangle or opinion space in 

[17]. Axes 𝑢, 𝑏, and 𝑑 correspond to uncertainty, 

belief, and disbelief, respectively. These axes run 

from one edge to the opposite vertex. 

Coordination of a point can be calculated by 

drawing perpendicular lines from the point to the 

corresponding axes and calculating the distance of 

the intersection point from the origin. 

 
The frame of opinion-owners for an activity is 

comprised of the opinion-owners that have been 

triggered frequently whenever the activity has 

taken place. Therefore, the beliefs of these 

opinion-owners for that activity should be high, 

and their disbeliefs and uncertainties for that 

activity should be low. Therefore, the frame of 

opinion-owners for activity 𝑎 will include the 

opinion-owners whose opinions about 𝑎 fall 

within an area of the opinion triangle with a high 

belief, low disbelief, and low uncertainty level. 

This area is named accept area in our approach. 

The dashed area in figure 1 shows an accept area 

for activity 𝑎 with uncertainty degrees less than or 

equal to 0.1, beliefs of more than or equal to 0.5, 

and disbeliefs of less than or equal to 0.5. Each 

activity would have its specific accept area. The 

accept area is one of the input parameters of our 

scheme. 

u 

d b 

OP=(0.1,0.3,0.6) 

Figure. 1. Opinion triangle for an activity, namely 𝒂. 

Point OP shows an opinion with 𝒃𝒂
𝑺 = 𝟎. 𝟏, 𝒅𝒂

𝑺 = 𝟎. 𝟑, 

and 𝒖𝒂
𝑺 = 𝟎. 𝟔, where 𝒔 is an opinion-owner. The dashed 

area shows an accept area for activity 𝐚 [17]. 
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4.3. Temporal correlation in a sequence of 

sensors 

Let 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 represent a sequence of 𝑛 

sensor triggers that corresponds to a number of 

activities in a period of time. Suppose that we 

want to infer the activities associated with S. A 

prerequisite task for inference is to find the 

subsequences of 𝑆 that have been triggered for an 

identical activity, although the activity is not 

known yet. To extract such subsequences, the 

temporal correlation of sensors’ activations is 

considered, i.e. sensors with close activation times 

are possibly triggered due to the same activity. 

We name such sensors temporally correlated. 

Therefore, to decide which sensors are temporally 

correlated, a clustering algorithm can be used. To 

do this, the k-means clustering algorithm is used 

to cluster the sensors based on their activation 

times. After clustering, the sensors in each cluster 

are considered as temporally correlated and an 

activity is inferred for each cluster. Note that in k-

means, the number of clusters must be known 

beforehand. In this case, since we do not know the 

number of clusters, we assume the maximum 

number of possible clusters, and finally, ignore 

the clusters with no instance. The maximum 

number of clusters will be equal to the number of 

sensors in S, i.e. 𝑛, because in the worst case, 

every single sensor would be in a separate cluster. 

As an example, consider a part of data in one day 

of sensor activations from a dataset by 

VanKasteren et al. [28], as shown in table 1. We 

want to infer the activities for this day. In the first 

step, the sensors are clustered. The sequences of 

sensors for each cluster are shown in table 2. 

Table 2 is called relation matrix throughout the 

paper. In the second step, activities will be 

inferred for the sequences of sensors in each row 

of the relation matrix. Sensors in each row are in 

the ascending activation time order. After 

inferring an activity for each row, the time 

interval from the activation of the first sensor to 

the last one in the row will be labeled with the 

inferred activity.  If a real world activity is 

inferred correctly within its real time interval, a 

true positive, and otherwise, a false negative will 

be recorded for it. A complete activity inference 

example is illustrated in section 5. 

Table 2. Relation matrix for a single day. 
 Sensor1 Sensor2 Sensor3 Sensor4 

cluster1 24 24 6 6 

cluster2 24 24 ---- ---- 

cluster3 6 14 8 ---- 

cluster4 8 7 8 ---- 

cluster5 9 23 8 8 

cluster6 5 ---- ---- ---- 

cluster7 5 ---- ---- ---- 

cluster8 12 12 ---- ---- 

4.4. Inference Architecture 

After the training phase, to infer the activities for 

a sequence of triggered sensors, firstly, the 

temporally correlated sensors are extracted, as 

illustrated in the previous sub-section (sub-section 

4.3). Then, for each sequence of temporally 

correlated sensors, a single activity is inferred. Let 

𝑆 = 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑙 represent a temporally 

correlated sequence of sensors in the ascending 

activation time order, for which a single activity 

should be inferred. The proposed architecture of 

figure 2 is used to infer the activity that 

corresponds to 𝑆. In this architecture, at first, all 

triggered opinion-owners, i.e. n-tuples with 𝑛 =

Table 1. Sensor activations for a single day. 
Activation 

Time 

Sensor 

ID 
Activation Time 

Sensor 

ID 

3/7/2008 6:59 24 3/7/2008 8:49 7 

3/7/2008 6:59 24 3/7/2008 8:49 8 

3/7/2008 6:59 6 3/7/2008 8:50 9 

3/7/2008 7:00 6 3/7/2008 8:50 23 

3/7/2008 8:38 24 3/7/2008 8:50 8 

3/7/2008 8:38 24 3/7/2008 8:51 8 

3/7/2008 8:44 6 3/7/2008 9:07 5 

3/7/2008 8:45 14 3/7/2008 9:15 5 

3/7/2008 8:45 8 3/7/2008 9:29 12 

3/7/2008 8:49 8 3/7/2008 9:29 12 

    

d-tuples 2-tuples 1-tuples 

𝑏𝑎
<𝑠1>

 
… 𝑏𝑎

<𝑠𝑙>
 𝑏𝑎

<𝑠1,𝑠2>

>

… 
𝑏𝑎

<𝑠𝑙−1,𝑠𝑙>

>

… … … … … 
𝑏𝑎

<𝑠1,𝑠2,…,𝑠𝑑>
 𝑏𝑎

<𝑠𝑙−𝑑+1,𝑠𝑙−𝑑+2,…,𝑠𝑙>

>

… 

Combination Result 

 Figure 2. Belief mass combination for activity 𝒂. Belief masses of triggered opinion-owners that belong to a’s 

frame of opinion-owners are combined using Dempster’s combination rule. 
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1,2,3, … , 𝑑 are extracted from 𝑆. Parameter 𝑑 

determines the number of n-tuple categories in the 

architecture. For example, for 𝑆′ = 𝑠1, 𝑠2, 𝑠3 and 

𝑑 = 3, three 1-tuples (< 𝑠1 >, < 𝑠2 >, < 𝑠3 >), 

three 2-tuples (< 𝑠1, 𝑠2 >, < 𝑠1, 𝑠3 >, < 𝑠1, 𝑠2 >), 

and one 3-tuple (< 𝑠1, 𝑠2, 𝑠3 >) can be extracted 

as opinion-owners. Note that in 𝑆′, < 𝑠2, 𝑠1 > is 

not considered as a triggered opinion-owner 

because sensor 𝑠1 is activated before 𝑠2 in 𝑆. This 

temporal order can take the activation time order 

into consideration. For example, suppose that a 

switch sensor, namely 𝑠1, is installed for the 

bedroom lamp, and is triggered whenever the 

lamp turns on or off, and switch sensor 𝑠2 is 

installed for the bedroom door, and is triggered 

whenever the door is opened. Consider that 

someone opens the door and then turns on the 

lights whenever enters the bedroom, and vice 

versa when exiting. Thus, the sequence < s2, s1 > 

shows an entrance activity, while the sequence <
s1, s2 > shows an exit activity. In fact, different 

sensor activation orders are evidences for different 

actions. Thus, different sensor orders are 

considered as different opinion-owners. 

After the first step, for each individual activity, 

namely 𝑎, the belief masses of the triggered 

opinion-owners that belong to 𝑎’s frame of 

opinion-owners are fused via the Dempster’s 

combination rule, as shown in figure 2. Finally, 

the activity with the maximum combined belief 

result is considered as the corresponding one. 

 

5. Work through example 
In this section, the inference scheme is illustrated 

through an example. The training dataset used in 

the following sub-sections consists of the sensors’ 

activation data and annotated activities of table 3 

and table 4, respectively.  

Table 3. Sensor data. 

Activation Time 
Sensor 

ID 
Activation Time 

Sensor 

ID 

3/6/2008 4:38:06 6 3/6/2008 9:04:51 6 

3/6/2008 4:38:30 8 3/6/2008 9:04:54 8 

3/6/2008 4:38:48 14 3/6/2008 9:38:53 6 

3/6/2008 8:39:37 6 3/6/2008 9:40:02 14 

3/6/2008 8:40:11 14 3/6/2008 9:42:31 6 

3/6/2008 9:04:35 8   
 

Table 4. Activity annotations. 

Index Start Time End Time Activity 

1 3/6/2008 4:38:02 3/6/2008 4:38:56 Use Toilet 

2 3/6/2008 8:39:35 3/6/2008 8:40:18 Use Toilet 

3 3/6/2008 9:04:05 3/6/2008 9:09:56 
Prepare 
Breakfast 

4 3/6/2008 9:38:48 3/6/2008 9:43:12 Use Toilet 
    

There are three sensors, i.e. 6, 8, and 14, and two 

activities, i.e. “Use Toilet” and “Prepare 

Breakfast”, in the dataset. It is supposed that one 

activity can take place at any time. The training 

and inference phases are exemplified in the 

following sub-sections. 

 

5.1. Training 

In the training phase, the first step is to make the 

set of opinion-owners and calculate their BPAs. 

As already illustrated, opinion-owners are the set 

of n-tuples with 𝑛 = 1,2, … , 𝑑, that are made out 

of sensors. We consider 𝑑 =  2 and obtain the set 

of all 1-tuples and 2-tuples from sensor IDs. It can 

be seen that there are 3 sensors in the training set. 

Thus there will be 9 opinion-owners, as shown in 

the first column of table 6. 

To calculate the BPAs of opinion-owners for 

activities, the sequence of sensors that are 

triggered for each annotated activity is obtained, 

and then (13) is applied. A sensor with an 

activation time greater than the start and less than 

the end time of an activity belongs to that 

activity’s sequence of triggered sensors. The start 

and end of an activity are annotated in table 4, 

which shows the triggered sensors for each 

activity of the training set. 

Now let’s calculate the BPAs of the opinion-

owner < 6 > for “Use Toilet” activity. In order to 

incorporate (13), the number of times where the 

activity “Use Toilet” has happened along with the 

opinion-owner < 6 >, i.e. 𝑁(6, “𝑈𝑠𝑒 𝑇𝑜𝑖𝑙𝑒𝑡”), 

and the number of times where the activity “Use 

Toilet” has not happened along with opinion-

owner < 6 >, i.e. 𝑁(6, ~“𝑈𝑠𝑒 𝑇𝑜𝑖𝑙𝑒𝑡”) must be 

calculated. As it can be seen in table 5, opinion-

owner < 6 > has been triggered in three “Use 

Toilet” activities and also in one “Prepare 

Breakfast” activity (repeated triggers for the same 

activity are counted once). Thus 𝑁(< 6 >
, “𝑈𝑠𝑒 𝑇𝑜𝑖𝑙𝑒𝑡”) = 3 and 𝑁(6, ~“𝑈𝑠𝑒 𝑇𝑜𝑖𝑙𝑒𝑡”) =
1. Therefore, by applying (13) for “Use Toilet” 

activity, we will have (14) as in the following: 
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As another instance, let’s calculate BPAs of 

opinion-owner < 6,14 > for “Use Toilet” 

activity. This opinion-owner has been triggered in 

3 “Use Toilet” activities, i.e. the opinion-owner <
6,14 > is a subsequence of three sensor sequences 

of “Use Toilet” activities in table 5 (note that in 

the first “Use Toilet” activity in table 5, sensors 6 

and 14 are not consecutive but their activation 

order is preserved). We can see that < 6,14 > has 

not been triggered for “Prepare Breakfast”. 

Therefore, 𝑁(< 6,14 >, “𝑈𝑠𝑒 𝑇𝑜𝑖𝑙𝑒𝑡”) = 3, and 

𝑁(< 6,14 >, ~“𝑈𝑠𝑒 𝑇𝑜𝑖𝑙𝑒𝑡”) = 0. By applying 

(13), we will have (15) as in the following. 
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The process will be the same for the other 

opinion-owners and activities.  All the opinion-

owners and their BPAs for “Use Toilet” and 

“Prepare Breakfast” are depicted in table 6. 

Table 6. Opinion owners and their BPAs for activities. 

 “Use Toilet” Activity “Prepare Breakfast” 

Activity 

OW B D U B D U 

<6> 0.5 0.17 0.33 0.17 0.5 0.33 

<8> 0.25 0.25 0.5 0.25 0.25 0.5 
<14> 0.6 0 0.4 0 0.6 o.4 

<6,8> 0.25 0.25 0.5 0.25 0.25 0.5 

<6,14> 0.6 0 0.4 0 0.6 0.4 
<8,6> 0 0.33 0.67 0.33 0 0.67 

<8,14> 0.33 0 0.67 0 0.33 0.67 

<14,6> 0.33 0 0.67 0 0.33 0.67 
<14,8> 0 0 1 0 0 1 

OW= opinion owner, B= belief, D= disbelief, U= uncertainty. 

 

In the second step, the frame of opinion-owners 

for each activity should be calculated. To do this, 

an accept area must be defined for the activities. 

The opinion-owners whose opinions for an 

activity fall within the accept area of that activity 

are added to the activity’s frame of opinion-

owners. In this example, let’s define the same area 

for all the activities with an uncertainty less than 

or equal to 0.5 and a belief greater than 0. Thus 

for “USE Toilet”, the set of opinion owners will 

be {< 6 >, < 8 >, < 14 >, < 6,8 >, < 6,14 >}. 

Similarly, it will be {< 6 >, < 8 >, < 6,8 >} for 

“Prepare Breakfast” activity. 

In this example, we used a simple and relatively 

large accept area for the sake of simplicity and 

expressiveness. But indeed, the opinion-owners of 

an activity must have a low uncertainty and high 

belief (low disbelief) about the activity. Therefore, 

in practice, a more confined accept area with such 

characteristics must be defined to get more 

reliable results. 

 

5.2. Inference 

Consider the sequence of sensor activations of 

table 1.  The first step to infer the activities for 

this sequence is to find the temporal correlation of 

sensors and obtain the relation matrix. The 

temporal correlation of these sensors has already 

been calculated in table 2. 

In the second step, an activity is inferred for each 

cluster, i.e. each row of the relation matrix. To do 

this, the triggered opinion-owners for each row 

are extracted. Then the belief masses of the 

triggered opinion-owners that belong to an 

activity’s frame of opinion-owners are combined 

for it using the Dempster’s combination rule. The 

activity with the maximum combination result is 

inferred for the row. 

Let’s infer the activity pertaining to cluster 3, i.e. 

the sequence 𝑆 = 6,14,8 in table 2. With 𝑑 = 2, 

as determined in the training phase, the triggered 

opinion-owners for 𝑆 will be {< 6 >, < 14 >, <
8 >, < 6,14 >, < 6,8 >, < 14,8 >}. Note that the 

triggered opinion-owners are ordered n-tuples 

whose sensors appear in S with the same order. 

For example, opinion-owners <8,6> or <14,6> 

have not been triggered because sensors 8 or 14  

had not been triggered before 6 in S. 

Next, the belief masses of the triggered opinion-

owners that belong to the frame of “Use Toilet” 

and “Prepare Breakfast” will be combined for 

their corresponding activity. We can see that all 

opinion-owners in the frame of “Use Toilet” and 

“Prepare Breakfast” activities are triggered in 𝑆. 

The combination results are shown in (16) and 

(17). 

Table 5. Sequence of sensors in ascending activation 

time order for each activity. 
Index Activity Sequence of sensors 

1 Use Toilet 6, 8, 14 

2 Use Toilet 6, 14 

3 
Prepare 

Breakfast 
8, 6, 8 

4 Use Toilet 6, 14, 6 
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 As it can be seen, the combination results for 

“Use Toilet” and “Prepare Breakfast” are 0.91 and 

0.30, respectively. Thus “Use Toilet” is the 

inferred activity for the sequence S. 

6. Simulations and results 

We run two experiments to evaluate the 

performance of the proposed method. In the first 

experiment, a comparison between the proposed 

method and three knowledge-driven approaches, 

i.e. BDS, 2LDS, and 3LDS is provided. Also a 

comparison with a naïve Bayes method is made 

available. In this experiment, an activity of daily 

life (ADL) dataset from MIT lab [22] is used.  

In the second experiment, we compare the 

proposed method with three data-driven activity 

recognition approaches. These approaches are 

based on NBCs, HMMs, and HSMMs, as 

implemented in [28]. In the second experiment, a 

larger dataset consisting of several frequent daily 

activities is used.   

In both experiments, the input parameter 𝑑 (that 

determines categories of n-tuples with 𝑛 =
1, … , 𝑑) is considered to be 2, and the accept area 

is considered as a region in the opinion space with 

an uncertainty less than 0.1, a belief greater than 

0.5 and a disbelief less than 0.5 for all activities. 

6.1 Experiment 1 

In this experiment, the proposed method is 

compared with the naïve Bayes activity 

recognition method of [22], and the approaches of 

BDS [4], 2LDS [5], and 3LDS [5]. An ADL 

dataset from MIT lab [22] is used to verify the 

proposed method. Subject one from the dataset is 

used for this simulation. In this case, 77 switch 

sensors are installed in a single-person apartment 

to collect data about the resident’s activities. The 

sensors are installed on different appliances such 

as drawers, cabinets, and taps to collect resident’s 

data. More details on the topology and data 

acquisition scheme are illustrated in [22]. 

The dataset includes two weeks of daily activities, 

in which a single person has done his/her daily 

activities. Leave-one-out cross-validation strategy, 

i.e. 13 days activity information for training and 1 

day information for testing, is used to measure the 

performance of the proposed method. In this 

experiment, we compare our method with the 

others for detecting the toileting activities because 

this activity is the most frequent one in the dataset 

that happens several times a day and adequate 

numbers of sensors are triggered for it. Thus the 

training data will be sufficient. Also the 

ontologies based on the sensors in the state of the 

art approaches can be well-defined. The three 

ontology-based approaches, i.e. BDS, 2LDS, and 

3LDS, have incorporated this activity to verify 

their methods, and reported their results for it as 

well [5]. 

Table 7 shows the simulation results for our 

method. The naïve Bayes method has provided 

61.2% precision and 83.5% recall, as reported in 

[22]. It can be seen that the proposed method has 

a precision of 84%, and outperforms the naïve 

Bayes approach. The recall resulted from our 

scheme is comparable, and approximately similar 

to the 83.5% recall from the naïve Bayes 

algorithm. However, the 82% F-measure of our 

method is also better than that of naïve Bayes 

algorithm. 

Table 8 provides a comparison between our 

algorithm and those of BDS, 2LDS, and 3LDS, as 

reported in [5]. It can be seen that our method is 

Table 7. Results of Proposed Method for Activity 

Recognition. 
Date TP FP FN TN PR RC 

27/3/2003 1 1 1 12 50% 50% 

28/3/2003 3 0 1 11 100% 75% 

29/3/2003 5 1 3 11 83.3% 62.5% 
30/3/2003 4 1 2 7 80% 66.67% 

31/3/2003 2 0 1 9 100% 66.67% 

1/4/2003 5 0 0 9 100% 100% 
2/4/2003 3 0 2 17 100% 60% 

3/4/2003 2 1 1 12 66.67% 66.67% 

4/4/2003 4 1 0 13 80% 100% 
5/4/2003 5 0 0 8 100% 100% 

6/4/2003 7 0 2 11 100% 77.78% 

7/4/2003 5 0 2 8 100% 71.42% 
8/4/2003 5 1 0 7 83.3% 100% 

9/4/2003 7 1 0 10 87.5% 100% 

10/4/2003 6 3 1 16 66.67% 85.7% 
11/4/2003 4 3 1 12 57.1% 80% 

Total 68 13 17 173 84% 80% 

TP= true positive, FP= false positive, FN= false negative, TN= 

true negative, PR= precision, RC= recall. 

Table 8. Comparison of BDS, 2LDS, 3LDS, and the 

proposed method. 
Method PR RC FM ACC 

BDS 69.4% 88.3% 77.7% 81.4% 

2LDS 84.7% 93.5% 88.9% 92.34% 
3LDS 88.2% 80% 84.2% 86.6% 

proposed 

method 
84% 80% 82% 88.9% 

PR= precision, RC= recall, FM= F-measure, ACC= accuracy. 
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better than BDS in terms of classification 

accuracy, precision, and F-measure. Also it can be 

seen that our method is slightly different from 

3LDS, having the same recall and a little 

difference in precision, F-measure, and accuracy. 

In comparison with 2LDS, the proposed method, 

BDS, and 3LDS have worse recall and F-measure, 

although the precision of the proposed method is 

the same as 2LDS, and its accuracy is similar to 

2LDS. It can be seen that the proposed method is 

comparable to 2LDS and 3LDS, and is slightly 

different from them. 

A statistical analysis, i.e. paired t-test, is also 

performed to show that there is no significant 

difference between our method, 2LDS, and 3LDS. 

To do this, the accuracies of activity recognition 

schemes are calculated for each day. The average 

accuracy of the proposed method, 2LDS, and 

3LDS were 89, 89.6, and 85.4 percent, 

respectively, and it seemed that they had no 

significant difference. To prove this, the paired t-

test was carried out to compare the accuracy 

means at a significance level of 𝛼 = 0.05, and the 

null hypothesis was considered as equal accuracy 

means. As the results are shown in table 9, since 

the absolute of t-values (t-Stat) is less than the t-

critical values, we fail to reject the null 

hypothesis, i.e. equal means. Thus the t-test 

testifies that there is no significant difference 

between the accuracies of the proposed method 

and those of 2LDS and 3LDS. 

The main difference between 2LDS, 3LDS, and 

our method is the way through which the ontology 

definitions for the activities are derived. In the 

proposed method, this task is done in an automatic 

manner, while it is done manually in 2LDS and 

3LDS. Therefore, our method is more extensible 

and flexible than the previous ones. It also 

preserves the previous method classification 

criteria, as the statistical analysis showed. 

6.2 Experiment 2 

In this experiment, the proposed method is 

compared to three benchmark activity recognition 

schemes, which are based on NBC, HMM, and 

HSMM classifiers, as implemented in [28] using a 

larger dataset than that of experiment 1. An ADL 

dataset by VanKasteren et. al. [28] is used for this 

experiment. The dataset consists of several weeks 

of data recorded in a real world setting. The 

wireless network nodes are equipped with various 

kinds of sensors that give binary outputs. A “0” 

indicates that the sensor is not in use, and a “1” 

indicates that the sensor is fired. The House A 

from dataset is selected for this experiment. In this 

case, 14 state change digital sensors are installed 

indoors, kitchen appliances, etc. Annotations are 

carried out by the resident using a headset and a 

voice-recognition software over 25 days. More 

details on the datasets can be found in [28]. 

We compared our method with the others to 

recognize several frequent daily activities from 

the dataset that happen in different places of the 

house consisting of “leave the house”, “use 

toilet”, “go to bed”, and “prepare breakfast”. 

Sufficient numbers of sensors are triggered for 

these activities, and a convenient training set will 

be available.  

As it is stated in [28], 3 features can be extracted 

from sensor activations/deactivations, and 

employed in the three above-mentioned activity 

recognition processes, i.e. raw data, change-point 

data, and last-fired data. The definitions of these 

features are as follow. For more details on the 

features and the way they are incorporated in the 

benchmark methods, the reader is referred to [28]. 

Raw: The raw sensor representation uses the 

sensor data directly as it was received from the 

sensors. It gives a 1 when the sensor is firing and 

a 0 otherwise. 

Change-point: The change point representation 

indicates when a sensor event takes place. More 

formally, it gives a 1 when a sensor changes state 

(i.e. goes from zero to one or vice versa) and a 0 

otherwise. 

Last-fired: The last-fired sensor representation 

indicates which sensor fired last. The sensor that 

changed state last, continues to give 1 and 

changes to 0 when another sensor changes state. 

We incorporated these features in the benchmark 

methods, as demonstrated in [28]. The 

classification criteria were calculated using the 

leave-one-out cross-validation strategy for each 

activity, and then averaged for each method. 

The results of experiment 2 are presented in table 

10. It can be seen that the proposed method 

outperforms all of the three methods that use raw 

Table 9. T-test comparison of the proposed method with 

2LDS, and 3LDS. 

  
Proposed 

method 

Comparison 

with 2LDS 

Comparison 

with 3LDS 

mean 0.890 0.896 0.854 

variance 0.0048 0.0151 0.0186 

observations 16 16 16 

pearson 

correlation 
 

0.2371 0.2278 
hypothesized 

mean difference 
 0 0 

df  15 15 
t-Stat  -0.1908 1.0371 

P(T<=t) one-tail  0.4256 0.1580 

t-critical one-tail  1.7530 1.7530 
P(T<=t) two-tail  0.8512 0.3161 

t-critical two-tail  2.1314 2.1314 
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data in terms of precision, recall, f-measure, and 

accuracy. Also our method outperforms the naïve 

Bayes approach that uses change-point feature. It 

can be seen that the proposed method is slightly 

different from the other approaches, and in most 

of the cases, it has a better performance. 

7. Conclusion and future work 

In this paper, a single layered architecture for 

human activity inference within smart homes was 

proposed. In this work, n-tuples (with 𝑛 =
1,2,3, … , 𝑑) of sensor IDs formed the set of 

opinion-owners. The belief masses were 

calculated using Beta probability distribution 

function through the training data. Having a 

sequence of triggered switch sensors, the 

Dempster’s combination rule was employed to 

combine the belief masses of triggered opinion-

owners, and finally an activity could be inferred 

via a decision-making scheme. 

We implemented two experiments to evaluate the 

performance of our method. In the first 

experiment, we used an ADL dataset from MIT 

lab. The proposed method was compared to a 

naïve Bayes approach [22] and three other 

ontology-based approaches, namely BDS, 2LDS, 

and 3LDS [5]. The results obtained showed that 

the proposed method outperforms the naïve Bayes 

and BDS schemes, having a precision of 84% and 

an accuracy of 88.9%. However, it had a similar 

performance, compared to 2LDS and 3LDS. But 

the proposed method is more extensible and 

flexible since no manual ontology definition is 

required.  In the second experiment, a larger 

dataset by VanKasteren et. al. [28] was used, and 

the proposed method was compared with three 

approaches based on NBCs, HMMs, and HSMMs. 

Three features were extracted from the sensors’ 

data and incorporated in the benchmark methods, 

which made 9 implementations. The simulations 

showed that our method outperformed the 

benchmark methods in most of the cases or was 

comparable to them, having a precision of 86.7% 

and an accuracy of 94.2%. 

The proposed method has two input parameters. 

The first one is parameter 𝑑 that determines the 

number of n-tuple categories, as depicted in sub-

section 4.4. This parameter can affect the 

classification efficiency and complexity. By 

increasing 𝑑, the number of opinion-owners will 

increase. Thus the beliefs of more opinion-owners 

are likely to be fused in the inference scheme. 

This will influence the classification efficiency 

and time/space complexity of the proposed 

method. However, we showed that with 𝑑 = 2, 

the classification performance of the proposed 

method was comparable to the others through the 

experiments. The second input parameter is the 

accept area that determines the frame of opinion-

owners for activities. The larger the accept area is, 

the more opinion-owners are likely to fall within 

the frame of opinion-owners of an activity. Thus 

more evidences, though contradicting, would be 

available for it. On the other hand, if the accept 

area is strictly confined, then the frame of 

opinion-owners may become empty, and no 

evidence may exist for an activity. This will also 

affect the efficiency of the activity inference 

scheme. The study of the impact of input 

parameters on the performance of the proposed 

method is left as a future work. 
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 چکیده:

باا ای بااور ننااا توده ه و صاحبان عقاید ،منظورهای هوشمند مبتنی بر حسگرها ارائه شده است. بدین روشی برای شناسایی اعمال در خانهدر این مقاله 

. انادفاده از تابع توزیاع بتاا مساسابه گردیادهتوده های باور با است. اندبه کار گرفته شده ایو در یک معماری استنتاج تک لایه از حسگرها ایجاد،استفاده 

گردند. روش پیشناادی باا برای اعمال به صورت اتوماتیک استخراج می پذیری بیشتر، قاب های صاحبان عقاید برای دستیابی به انعطاف پذیری و توسعه

و ساه رویکارد مبتنای بار بیاز  ساادهدر نزمایش اول، روش پیشناادی با یک رویکرد مبتنی بار رده بناد استفاده از دو نزمایش مجزا ارزیابی شده است. 

هرچناد، در  دهاد.عملکارد باتاری را نشاان مای ،در مقایسه با رده بند بیاز %9/88روش پیشناادی با میزان درستی هستان شناسی مقایسه شده است. 

باشاد. اماا از ننجاا کاه در روش پیشاناادی تعریا  مقایسه با رویکرد های مبتنی بر هستان شناسی، کارنیی روش پیشناادی مشابه و قابل مقایسه مای

مجموعاه  ،در نزماایش دوم های قبلی دارد.نسبت به روش را انعطاف پذیری و توسعه پذیری بیشتری شود،انجام نمیهستان شناسی ها به صورت دستی 

مارکوف نیمه مخفی مقایساه بیز، مدل مارکوف مخفی، و مدل  سادهیکرد مبتنی بر رده بند و روش پیشناادی با سه رو به کار گرفته  شده،داده بزرگتری 

های مورد مقایسه بوده، و یا با ننااا در بسیاری از حالات باتر از روش دهد، کهنشان می را %5/90روش پیشناادی درستی  ،است. در این نزمایش گردیده

 قابل مقایسه است.
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