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RADICAL OF FILTERS IN RESIDUATED LATTICES

S. MOTAMED∗

Abstract. In this paper, the notion of the radical of a filter in
residuated lattices is defined and several characterizations of the
radical of a filter are given. We show that if F is a positive im-
plicative filter (or obstinate filter), then Rad(F ) = F . We proved
the extension theorem for radical of filters in residuated lattices.
Also, we study the radical of filters in linearly ordered residuated
lattices.

1. Introduction

Non-classical logic has become a formal and useful tool for computer
science to deal with uncertain information and fuzzy information. The
algebraic counterparts of some non-classical logics satisfy residuation
and those logics can be considered in a frame of residuated lattices. The
integral commutative residuated l-monoid (i.e., residuated lattice), is
an important class of logical algebras. Residuated lattices, introduced
by Ward and Dilworth in [10], are a common structure among algebras
associated with logical systems. The filter theory of the logical algebras
plays an important role in studying these algebras and the completeness
of the corresponding non-classical logics. From a logical point of view,
various filters correspond to various sets of provable formulas.

Busneag and Piciu in [5] introduced (positive) implicative and fan-
tastic filters of residuated lattices. Ahadpanah and Torkzadeh, defined
the notion of normal filters of residuated lattices in [1], and Bourmand
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Saeid and Pourkhatoun defined the notion of obstinate filters of resid-
uated lattices in [3]. The aim of this paper is to present some new
results in the field of residuated lattices, specifically by introducing
and studying the radical of filters in residuated lattices.

The structure of this paper is as follows: In Section 2, we recall some
definitions and facts about residuated lattices that we will use in the
sequel. In Section 3, we will introduce the concept of the radical of a
filter and we investigate some of its properties.

2. Preliminaries

A residuated lattice is an algebra (L,∧,∨,⊙,→, 0, 1) with four binary
operations ∧,∨, ∗,→ and two constants 0, 1 such that:

(LR1) (L,∧,∨, 0, 1) is a bounded lattice;
(LR2) (L,⊙, 1) is a commutative ordered monoid;
(LR3) ⊙ and → form an adjoint pair i.e, c ≤ a → b if and only if

a⊙ c ≤ b, for all a, b, c ∈ L.

Letting x ∈ L be an arbitrary element, x∗ is defined by x → 0.

Proposition 2.1. [2, 7, 10] Let L be a residuated lattice. Then, for
any x, y, z, w ∈ L, we have:

(R1) 1 → x = x, x → x = 1;
(R2) x⊙ y ≤ x, y hence x⊙ y ≤ x ∧ y, x ≤ y → x and x⊙ 0 = 0;
(R3) x ≤ y if and only if x → y = 1;
(R4) x → 1 = 1, 0 → x = 1, 1 → 0 = 0;
(R5) x ≤ (x → y) → y ;
(R6) x → y ≤ (z → x) → (z → y) ≤ z → (x → y);
(R7) x → y ≤ (y → z) → (x → z) and (x → y)⊙ (y → z) ≤ x → z;
(R8) x ≤ y implies y → z ≤ x → z, z → x ≤ z → y, x⊙ z ≤ y ⊙ z,

y∗ ≤ x∗, and x∗∗ ≤ y∗∗;
(R9) x → (y → z) = (x⊙ y) → z = y → (x → z) (so, x → y∗ = y →

x∗ = (x⊙ y)∗);
(R10) x ≤ x∗∗, x∗∗∗ = x∗ and x ≤ x∗ → y;
(R11) x⊙ x∗ = 0, x⊙ y = 0 iff x ≤ y∗;
(R12) x∗ ⊙ y∗ ≤ (x⊙ y)∗ so, (x∗)n ≤ (xn)∗, for every n ≥ 1;
(R13) x∗∗ ⊙ y∗∗ ≤ (x⊙ y)∗∗ so, (x∗∗)n ≤ (xn)∗∗, for every n ≥ 1;
(R14) (x ∨ y)∗ = x∗ ∧ y∗;
(R15) (x → y∗∗)∗∗ = x → y∗∗;
(R16) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z).

From now onwards, (L,∧,∨,⊙,→, 0, 1) or simply L, is a residuated
lattice.
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The following definitions are stated from [1, 3, 5, 9]. Let ϕ ̸= F ⊆ L,
and x, y, z ∈ L. For convenience, we enumerate some conditions which
will be used in the sequel:

(F1) x, y ∈ F implies x⊙ y ∈ F and x ∈ F , x ≤ y imply y ∈ F .
(F1)

′
1 ∈ F and x, x → y ∈ F imply y ∈ F .

(F2) x ∨ y ∈ F implies x ∈ F or y ∈ F .
(F2)

′
x → y ∈ F or y → x ∈ F .

(F3) x ̸∈ F if and only if there exists n ≥ 1 such that (xn)∗ ∈ F .
(F4) (y → z) → y ∈ F implies y ∈ F .
(F5) x, y ̸∈ F implies x → y ∈ F and y → x ∈ F .

F is called a filter of L, if it satisfies in the condition (F1). The set
of all filters in L, is denoted by F (L). We have F ∈ F (L) if and only
if it satisfies in the condition (F1)

′
. F ∈ F (L) is called proper if F ̸= L

(that is, 0 ̸∈ F ). F is called a prime filter of L, if 0 ̸∈ F and it satisfies
in the conditions (F1) and (F2). We denote by Spec(L), the set of all
prime filters of L. F ∈ Spec(L) if and only if 0 ̸∈ F and it satisfies in
conditions (F1) and (F2)

′
. F is called a maximal filter of L, if 0 ̸∈ F

and it satisfies in the conditions (F1) and (F3). We denote by Max(L),
the set of all maximal filters of L. F is called a positive implicative
filter of L, if it satisfies in the conditions (F1) and (F4). We denote by
PIF (L), the set of all positive implicative filters of L. F is called an
obstinate filter of L, if 0 ̸∈ F and it satisfies in the conditions (F1) and
(F5). We denote by OF (L), the set of all obstinate filters of L. We
have, Max(L) ⊆ Spec(L).

Theorem 2.2. [8] Let L be a nontrivial residuated lattice and F ∈
F (L). Then

(1) There exists M ∈ Max(L), such that F ⊆ M .
(2) If a ̸∈ F , there exists P ∈ Spec(L) such that F ⊆ P and a ̸∈ P .

An element a ∈ L is called complemented if there exists an element
b ∈ L such that a ∨ b = 1 and a ∧ b = 0. We will denote the set of all
complemented elements in L by B(L). If e ∈ B(L), then (e → x) →
e = e, for every x ∈ L, [4].

Definition 2.3. [6] The intersection of all maximal filters of a resid-
uated lattice L is called the radical of L, and is denoted by Rad(L).
Then, Rad(L) = {a ∈ L : (an)∗ ≤ a, for any n ∈ N}.
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3. On Radical of Filters

Definition 3.1. Let F be a proper filter of L. The intersection of all
maximal filters of L which contain F is called the radical of F , and it
is denoted by Rad(F ). If F = L, then we put Rad(L) = L.

Note. Rad({1}) is the same as Rad(L), which is defined in [6].

Theorem 3.2. Let F ∈ F (L). Then

(1) Rad(F ) ∈ F (L).
(2) F ⊆ Rad(F ).
(3) If F ∈ Max(L), then Rad(F ) = F .

Proof. By Definition 3.1, the proof is clear. □
In the following example, we show that the inverse inclusion of The-

orem 3.2(3), may not hold in general.

Example 3.3. Let L = {0, a, b, c, d, 1}, where 0 < c < a, b < 1 and
0 < d < a < 1. Define ⊙ and → as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b b a 1
b d a 1 a d 1
c a 1 1 1 a 1
d b 1 b b 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 d c 0 d a
b 0 c b c 0 b
c 0 0 c 0 0 c
d 0 d 0 0 d d
1 0 a b c d 1

Then, (L,∧,∨,⊙,→, 0, 1) is a residuated lattice. We can see that
Rad({1}) = {1}, while {1} ̸∈ Max(L).

Theorem 3.4. Let F be a proper filter of L and a ∈ L. The following
conditions are equivalent:

(1) a ∈ Rad(F );
(2) (an)∗ → a ∈ F , for all n ∈ N ;
(3) a∗ → an ∈ F , for all n ∈ N .

Proof. (1) ⇒ (2) Let a ∈ Rad(F ) and there exists n ∈ N such that
(an)∗ → a ̸∈ F . Then, by Theorem 2.2(2), there exists P ∈ Spec(L)
such that F ⊆ P and (an)∗ → a ̸∈ P . Since P ∈ Spec(L), we obtain
a → (an)∗ ∈ P . Also, by Theorem 2.2(1), there exists M ∈ Max(L)
such that M ⊇ P . Therefore, a → (an)∗ ∈ M . If a ∈ M , then an ∈ M ,
for all n ∈ N . Also, we have a → (an)∗ ∈ M , hence (an)∗ ∈ M and so
0 = an ⊙ (an)∗ ∈ M , which is a contradiction. Thus, a ̸∈ M . We have
F ⊆ P ⊆ M and a ̸∈ M , hence a ̸∈ Rad(F ), which is a contradiction.
Therefore, (an)∗ → a ∈ F , for all n ∈ N .
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(2) ⇒ (1) Let (an)∗ → a ∈ F , for all n ∈ N and a ̸∈ Rad(F ).
Then, there exists M ∈ Max(L), such that M ⊇ F and a ̸∈ M .
Since M ∈ Max(L), there exists n ∈ N such that (an)∗ ∈ M . We
have (an)∗ → a ∈ F ⊆ M , hence a ∈ M . Then, an ∈ M and so
0 = (an)∗ ⊙ an ∈ M , which is a contradiction. Therefore, a ∈ Rad(F ).

(1) ⇒ (3) Let a ∈ Rad(F ). Since Rad(F ) ∈ F (L), we obtain an ∈
Rad(F ), for all n ∈ N . So, by (1) ⇔ (2), we get ((an)m)∗ → an ∈ F ,
for all m ∈ N . We have anm ≤ a then by Proposition 2.1, (anm)∗ →
an ≤ a∗ → an. Therefore, a∗ → an ∈ F , for all n ∈ N .

(3) ⇒ (1) Let a∗ → an ∈ F , for all n ∈ N and a ̸∈ Rad(F ). Then
there exists M ∈ Max(L) such that F ⊆ M and a ̸∈ M . Hence,
there exists m ∈ N such that (am)∗ ∈ M . By Proposition 2.1, we have
am ≤ (am)∗∗, hence a∗ → am ≤ a∗ → (am)∗∗, and so a∗ → (am)∗∗ ∈ F .
By Proposition 2.1, we have

(am)∗ → a∗∗ = (am)∗ → (a∗ → 0),

= a∗ → ((am)∗ → 0),

= a∗ → (am)∗∗ ∈ F.

Therefore, (am)∗ → a∗∗ ∈ F ⊆ M . Since (am)∗ ∈ M , we get that
a∗∗ ∈ M and so (a∗∗)m ∈ M , for all m ∈ N . By Proposition 2.1, we
have (a∗∗)m ≤ (am)∗∗. Thus (am)∗∗ ∈ M . Since (am)∗ ∈ M , hence
0 = (am)∗∗ ⊙ (am)∗ ∈ M , which is a contradiction, and our proof is
finished. □
Theorem 3.5. Let F ∈ F (L). Then

(1) If F ∈ PIF (L), then Rad(F ) = F .
(2) If F ∈ OF (L), then Rad(F ) = F .

Proof. (1) Let F ∈ PIF (L). By Theorem 3.2(2), we must show that
Rad(F ) ⊆ F . Let x ∈ Rad(F ). Then, by Theorem 3.4, we get (xn)∗ →
x ∈ F , for all n ∈ N . Take n = 1, (x → 0) → x ∈ F . Thus, by the
fact that F ∈ PIF (L), we get x ∈ F , that is Rad(F ) ⊆ F . Therefore,
Rad(F ) = F .

(2) The proof follows from OF (L) ⊆ PIF (L) [3, Theorem 3.13] and
part (1). □

Remark. By Theorem 3.4[1], if F ∈ PIF (L), then (x → y) → y ∈
F implies (y → x) → x ∈ F , for x, y ∈ L.

By the above remark and the following example, we conclude that
the converse of Theorem 3.5, may not hold in general.

Example 3.6. Let L = [0, 1]. Define ⊙ and →, as follows:

x⊙ y = min{x, y} and x → y =

{
1 if x ≤ y
y if x > y

,
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Then (L,∧,∨,⊙,→, 0, 1) is a residuated lattice, and F = [1
2
, 1] ∈

F (L). We have (1
4
→ 1

5
) → 1

5
= 1 ∈ F but (1

5
→ 1

4
) → 1

4
= 1

4
̸∈ F.

Hence, F ̸∈ PIF (L) and so (by OF (L) ⊆ PIF (L) [3, Theorem 3.13] )
F ̸∈ OF (L), while Rad(F ) = F .

Theorem 3.7. Let F be a proper filter of L and a, b ∈ Rad(F ). Then,
the following conditions hold:

(1) a∗ → b ∈ F .
(2) (a∗ ⊙ b∗)∗ ∈ F .

Proof. (1) Let a, b ∈ Rad(F ). Then, a⊙ b ∈ Rad(F ) and so (a⊙ b)∗ →
(a⊙ b) ∈ F . We have a⊙ b ≤ a then (a⊙ b)∗ → (a⊙ b) ≤ a∗ → (a⊙ b).
Therefore, a∗ → (a⊙ b) ∈ F . Since a⊙ b ≤ b, then a⊙ b → b = 1 ∈ F
and so (a∗ → (a ⊙ b)) ⊙ ((a ⊙ b) → b) ∈ F . By Proposition 2.1,
(a∗ → (a⊙b))⊙ ((a⊙b) → b) ≤ a∗ → b. Hence, we obtain a∗ → b ∈ F .

(2) Let a, b ∈ Rad(F ). Then by (1), we have a∗ → b ∈ F . By
Proposition 2.1, b ≤ b∗∗ we get that a∗ → b ≤ a∗ → b∗∗ and then
a∗ → b∗∗ ∈ F . By Proposition 2.1, we have (a∗ ⊙ b∗)∗ = a∗ → b∗∗ and
then (a∗ ⊙ b∗)∗ ∈ F . □
Example 3.8. Let L = {0, a, b, c, d, 1} be as in Example 3.3. We have
F = {b, 1} ∈ F (L). d∗ → b = 1 ∈ F while d ̸∈ Rad(F ) = {b, 1}, hence
the converse of Theorem 3.7(1) is not true in general. (a∗ ⊙ b∗)∗ = 1 ∈
F , while a ̸∈ Rad(F ), hence the converse of Theorem 3.7(2) is not true
in general.

Lemma 3.9. Let F be a proper filter of L and a ∈ L. Then a∗ = 0,
for all a ∈ L \ {0}, if and only if Rad(F ) = L \ {0}.
Proof. Let a∗ = 0, for all a ∈ L\{0}. It is clear that Rad(F ) ⊆ L\{0}.
We must show that L \ {0} ⊆ Rad(F ). Take x ∈ L \ {0}, then by
hypothesis x∗ = 0 and so x∗ → xn = 0 → xn = 1 ∈ F , for all n ∈ N .
Therefore, x ∈ Rad(F ), by Theorem 3.4. Hence, Rad(F ) = L \ {0}.

Conversely, let Rad(F ) = L \ {0} and there exists a ∈ L \ {0} such
that a∗ ̸= 0. Hence, by hypothesis a∗, a ∈ Rad(F ), so 0 ∈ Rad(F ),
which is a contradiction. □
Theorem 3.10. Let F and G be proper filters of L and a, b ∈ L. Then,

(1) If F ⊆ G, then Rad(F ) ⊆ Rad(G).
(2) Rad(F ) = L if and only if F = L.

Proof. (1) Let F ⊆ G and x ∈ Rad(F ). Then, (xn)∗ → x ∈ F ⊆ G,
for all n ∈ N . Hence, x ∈ Rad(G).

(2) Let Rad(F ) = L. Then, 0 ∈ Rad(F ) and so 0 = 1 → 0 =
(0n)∗ → 0 ∈ F , for all n ∈ N. Therefore, F = L. The converse is
clear. □
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An element a ∈ L is called a nilpotent element of L, if an = 0, for
some n ∈ N . The set of all nilpotent elements of L is denoted by
Nil(L).

The order of x ∈ L, denoted by ord(x), is the smallest n ∈ N such
that xn = 0. If there is no such n, then ord(x) = ∞.

Theorem 3.11. Let L be a linear ordered residuated lattice and F be
a proper filter of L. Then, we have the following statements.

(1) If a ∈ Rad(F ), then, ((an)∗ ⊙ (an)∗) → a = 1, for all n ∈ N ;
(2) If a ̸∈ Rad(F ) then a ∈ Nil(L);
(3) Rad(F ) = {a : ord(a) = ∞};
(4) Rad(F ) = {a ∈ L : ((an)∗)m = 0, ∀ n ∈ N, ∃m ∈ N}.

Proof. (1) Let a ∈ Rad(F ). Then (an)∗ → a ∈ F , for all n ∈ N . We
have (an)∗ → a ≤ (an)∗ or (an)∗ ≤ (an)∗ → a, for all n ∈ N . Let
(an)∗ → a ≤ (an)∗. Since (an)∗ → a ∈ F then (an)∗ ∈ F and so a ∈ F .
Hence, an ∈ F , for all n ∈ N , so (an)∗ ⊙ an ∈ F . Therefore, 0 ∈ F ,
which is a contradiction. Hence, (an)∗ ≤ (an)∗ → a, for all n ∈ N .
Then (an)∗ → ((an)∗ → a) = 1, for all n ∈ N , so ((an)∗⊙ (an)∗) → a =
1, for all n ∈ N .

(2) Let a ̸∈ Rad(F ). Then, by Theorem 3.4, there exists m ∈ N ,
such that (am)∗ → a ̸∈ F . Hence, a < (am)∗, and so by (LR3),
am+1 = a⊙ am = 0. Therefore, a ∈ Nil(L).

(3) Let a ∈ Rad(F ) and ord(a) < ∞. Hence, there exists m ∈ N
such that am = 0. By filter property of Rad(F ), we get that am ∈
Rad(F ). Therefore, 0 ∈ Rad(F ), which is a contradiction. Hence,
ord(a) = ∞.

Conversely, let ord(a) = ∞ and a ̸∈ Rad(F ). Then by (2), a ∈
Nil(L), i.e. ord(a) < ∞. It is a contradiction, hence a ∈ Rad(F ).
Thus, the proof is complete.

(4) Let ((an)∗)m = 0, for all n ∈ N , for somem ∈ N and a ̸∈ Rad(F ).
Then, there exists M ∈ Max(L) such that F ⊆ M and a ̸∈ M . So
(an)∗ ∈ M , for some n ∈ N . By hypothesis, we have ((an)∗)m = 0,
for some m ∈ N , hence 0 ∈ M , which is a contradiction. Therefore,
a ∈ Rad(F ).

Conversely, let a ∈ Rad(F ), ((an)∗)m ̸= 0, for some n ∈ N and for
all m ∈ N . Hence ord((an)∗) = ∞. By part (3), we obtain (an)∗ ∈
Rad(F ), and we have an ∈ Rad(F ), for all n ∈ N . Therefore 0 =
(an)∗ ⊙ an ∈ Rad(F ), which is a contradiction. So ((an)∗)m = 0, for all
n ∈ N and for some m ∈ N . □
Lemma 3.12. Let F ∈ F (L). Then

(1) Rad(F )
∩

B(L) ⊆ F .



118 MOTAMED

(2) Rad({1})
∩
B(L) = {1}.

Proof. (1) Let x ∈ Rad(F )
∩

B(L). Then, x ∈ Rad(F ) and x ∈ B(L).
By x ∈ B(L), we have (x → 0) → x = x. By x ∈ Rad(F ), (xn)∗ →
x ∈ F , for all n ∈ N , and so x∗ → x ∈ F . We have x∗ → x = x.
Hence, x ∈ F . Therefore, Rad(F )

∩
B(L) ⊆ F .

(2) taking F = {1} in part (1), the proof is clear. Then the proof is
clear. □

In the following example we show that the equality of Lemma 3.12(1)
may not hold, in general.

Example 3.13. Let L = {0, a, b, 1}, where 0 < a < b < 1. Define ⊙
and → as follows:

⊙ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then, (L,∧,∨,⊙,→, 0, 1) is a residuated lattice and it is clear that
F = {b, 1} ∈ F (L) and B(L) = {0, 1}. Hence, F ̸= Rad(F )

∩
B(L).

If F ∈ F (L), then the relation ∼F defined on L by (x, y) ∈∼F if and
only if x → y ∈ F and y → x ∈ F is a congruence relation on L. The
quotient algebra L/ ∼F denoted by L/F becomes a residuated lattice
in a natural way, with the operations induced from those of L. So, the
order relation on L/F is given by x/F ≤ y/F if and only if x → y ∈ F .
We have G/F ∈ Max(L/F ) if and only if G ∈ Max(L) and F ⊆ G.

Theorem 3.14. Let F ∈ F (L). Then, we have the following state-
ments.

(1) Rad(Rad(F )) = Rad(F ).
(2) Rad(Rad(F )/F ) = Rad(F )/F = Rad({1}/F ).
(3) If Rad(F ) ⊆ B(L), then Rad(F ) = F .

Proof. (1) By Theorem 3.2(2), we have Rad(F ) ⊆ Rad(Rad(F )). It is
enough to show that Rad(Rad(F )) ⊆ Rad(F ). Let x ∈ Rad(Rad(F )).
Then, x ∈ M , for all M ∈ Max(L) containing Rad(F ). Let M0 ∈
Max(L) containing F . Then M0 = Rad(M0) ⊇ Rad(F ) and so x ∈
M0. Therefore, x ∈ Rad(F ), that is Rad(Rad(F )) ⊆ Rad(F ). Thus,
Rad(Rad(F )) = Rad(F ).
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(2) We haveRad(F )/F ⊆ Rad(Rad(F )/F ). We show thatRad(Rad(
F )/F ) ⊆ Rad(F )/F . Take a/F ∈ Rad(Rad(F )/F ), then ((a/F )n)∗ →
a/F ∈ Rad(F )/F , for all n ∈ N . Hence, ((an)∗ → a)/F = b/F , for
some b ∈ Rad(F ), so b → ((an)∗ → a) ∈ F ⊆ Rad(F ). Therefore,
(an)∗ → a ∈ Rad(F ), for all n ∈ N , that is a ∈ Rad(Rad(F )). Thus,
a/F ∈ Rad(Rad(F ))/F = Rad(F )/F .

Now, by definition of radical, we have

Rad({1}/F ) =
∩

N∈Max(L)
F⊆N

(N/F ) = (
∩

N∈Max(L)
F⊆N

N)/F = Rad(F )/F.

(3) It is clear by Lemma 3.12(1). □
Proposition 3.15. Let F ∈ F (L). Then Rad(F ) = F if and only if
Rad({1}/F ) = {1}/F .

Proof. Let Rad(F ) = F . Then, by Theorem 3.14(2), we have Rad({1}
/F ) = Rad(F )/F = F/F = {1}/F . Hence Rad({1}/F ) = {1}/F .

Conversely, let Rad({1}/F ) = {1}/F . Then by Theorem 3.14(2),
Rad(F )/F = {1}/F . We must show that Rad(F ) ⊆ F . Let x ∈
Rad(F ). Then, x/F ∈ Rad(F )/F = {1}/F , and x/F = 1/F that is
x ∈ F , hence Rad(F ) ⊆ F . Therefore, Rad(F ) = F . □
Proposition 3.16. Let L be a linear residuated lattice. a ∈ Nil(L) if
and only if a/Rad(F ) ∈ Nil(L/Rad(F )).

Proof. Let L be a linear residuated lattice and a/Rad(F ) ∈ Nil(L/Rad(
F )). Then there exists n ∈ N such that an/Rad(F ) = (a/Rad(F ))n =
0/Rad(F ), and so an ̸∈ Rad(F ). By Theorem 3.4, there exists m ∈ N
such that ((an)m)∗ → an ̸∈ F , hence ((an)m)∗ ≰ an. By hypothesis,
we get that an < ((an)m)∗, so by (LR3), we get that an ⊙ (an)m = 0.
Therefore, a ∈ Nil(L).

Conversely, let a ∈ Nil(L). Then, there exists n ∈ N such that
an = 0. Hence 0/Rad(F ) = an/Rad(F ) = (a/Rad(F ))n. Therefore,
a/Rad(F ) ∈ Nil(L/Rad(F )). □
Proposition 3.17. Let {Fi}i∈I be a family of filters of L. Then,
Rad(

∩
i∈I Fi) =

∩
i∈I Rad(Fi).

Proof. We have
∩

i∈I Fi ⊆ Fi ⊆ Rad(Fi), for all i ∈ I, then by Theo-
rems 3.10(1) and 3.14(1), we get that Rad(

∩
i∈I Fi) ⊆ Rad(Fi), for all

i ∈ I. Therefore, Rad(
∩

i∈I Fi) ⊆
∩

i∈I(Rad(Fi)).
Conversely, let x ∈

∩
i∈I(Rad(Fi)). Then x ∈ Rad(Fi), for all i ∈ I,

and so (xn)∗ → x ∈ Fi, for all i ∈ I and n ∈ N . Hence, (xn)∗ →
x ∈

∩
i∈I Fi, for all n ∈ N , that is x ∈ Rad(

∩
i∈I Fi). Therefore,

Rad(
∩

i∈I Fi) =
∩

i∈I Rad(Fi). □
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Theorem 3.18. Let x ∧ x∗ = 0, for all x ∈ L. We have the following
statements:

(1) Nil(L) = {0}.
(2) If L is a linear residuated lattice, then Rad(F ) = {x ∈ L : x∗ =

0}, for each proper filter F of L.

Proof. (1) Suppose that there exists 0 ̸= x ∈ Nil(L). So there is the
smallest natural number n such that xn = 0. Hence, by Proposition
2.1, we get that xn−1 ≤ x∗. On the other hand, we have xn−1 ≤ x,
so xn−1 ≤ x∗ ∧ x = 0. Hence, xn−1 = 0, which is a contradiction.
Therefore, 0 is the only nilpotent element of L, i.e. Nil(L) = {0}.

(2) Let x ∈ Rad(F ). Then, by Theorem 3.11(4), we have ((xn)∗)m =
0, for all n ∈ N and for some m ∈ N . So, (xn)∗ ∈ Nil(L), for all
n ∈ N . Thus by part (1), we get that x∗ = 0.

Conversely, let x∗ = 0. Then, 0 = x∗ ≤ xn, for all n ∈ N , and so
x∗ → xn = 1 ∈ F , for all n ∈ N . Hence, x ∈ Rad(F ), by Theorem
3.4. □

4. Conclusion

In this paper, we introduced the notion of the radical of a filter F
in residuated lattices and we presented a characterization and many
important properties of Rad(F ). We proved that if F ∈ PIF (L) or
F ∈ OF (L), then Rad(F ) = F . Finally, we proved that in linearly
ordered residuated lattice, radical of all proper filters are equal.

In our future work, we are going to consider the notion of the radical
of primary filters and try to define other types of filters in residuated
lattices and other logical algebraic structures. We hope this work would
serve as a foundation for further studies on the structure of residuated
lattices and develop corresponding many-valued logical systems.
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مانده مشبکه�های در فیلترها رادیکال

معتمد سمیه
پایه علوم دانشکده بندرعباس، واحد اسلامی آزاد دانشگاه بندرعباس، ایران،

بدست آن ویژگی�های و است شده تعریف مانده مشبکه�های در فیلتر یک رادیکال مفهوم مقاله، این در
برابر فیلتر با فیلتر رادیکال آن�گاه باشد، سرسخت) (یا مثبت استلزامی فیلتر اگر داده�ایم نشان است. آمده
رادیکال ویژگی همچنین کردیم. ثابت مانده مشبکه�های در فیلترها رادیکال برای را توسیع ویژگی و است

کردیم. بررسی خطی مانده مشبکه�های در را فیلترها

مانده. مشبکه�های رادیکال، (ماکسیمال)، اول فیلتر کلیدی: کلمات

٣
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