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Abstract 

In many real-world applications, various optimization problems with conflicting objectives are very 

common. In this work, we employ Multi-Objective Evolutionary Algorithm based on Decomposition 

(MOEA/D), a newly developed method beside Tabu Search (TS) accompaniment to achieve a new manner 

for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This 

improved hybrid algorithm, namely MOEA/D-TS, uses the parallel computing capacity of MOEA/D along 

with the neighborhood search authority of TS for discovering Pareto optimal solutions. Our goal is to exploit 

the advantages of evolutionary algorithms and TS to achieve an integrated method to cover the totality of the 

Pareto front by uniformly distributed solutions. In order to evaluate the capabilities of the proposed method, 

its performance based on various metrics is compared with SPEA, COMOEATS, and SPEA2TS on the well-

known Zitzler-Deb-Thiele’s ZDT test suite and DTLZ test functions with separable objective functions. 

According to the experimental results obtained, the proposed method could significantly outperform the 

previous algorithms and produce fully satisfactory results.  

 

Keywords: Multi-objective Problems, Evolutionary Algorithms, Hybrid Method, MOEA/D, Tabu Search. 

1. Introduction 

Multi-objective optimization problems (MOPs) 

with the aim of optimizing a collection of various 

objectives, systematically and simultaneously, are 

among important challenges in the today’s world. 

Unlike single-objective optimization, finding an 

optimal trade-off among conflicting objectives in 

a multi-objective problem is often more complex 

and challenging [1]. Also it is necessary to 

determine a community of points, which are 

compatible with a pre-determined definition for an 

optimum. For trading off between solutions, a vast 

piece of information about the desired problem is 

required to opt the best solutions and omit the 

unwanted ones based on the problem constraints. 

Typically, a number of potentially Pareto optimal 

solutions are good candidates as optimal trade-off 

for these kinds of problems [2].  

Many researchers believe that Evolutionary 

Algorithms (EAs), which make use of the strategy 

of population evolutionary to optimize the 

problems, are able to perform better than other 

blind search strategies confronting MOPs [3-5]. 

Within the last decade, various techniques have 

been proposed, which demonstrate the power of 

Multi-Objective Evolutionary Algorithms 

(MOEAs) for solving MOPs [7-16]. These kinds 

of methods can produce a set of Pareto-optimal 

solutions in a single run using a population of 

candidate solutions [17]. As an important 

population-based EA, Genetic Algorithm (GA) is 

well-suited to solve multi-objective optimization 

problems. Multi-Objective Genetic Algorithm 

(MOGA) [18], Niched Pareto Genetic Algorithm 

(NPGA) [19], and Non-dominated Sorting 

Genetic Algorithm (NSGA) [5] are among the 

first efforts to take advantage of GA having 

specialized fitness functions and various methods 

to promote solution diversity [8]. 

One fundamental shortcoming of these methods is 

the neglect of elitism strategy, which was 

recognized and supported experimentally in the 

multi-objective searches a few years later [20, 21]. 

Strength Pareto Evolutionary Algorithm (SPEA) 

[21] was one of the first techniques that 

outperformed the (non-elitist) alternative 

approaches [21,22]. An improved version of 



Karimi & Lotfi/ Journal of AI and Data Mining, Vol 5, No 2, 2017. 
 

184 

 

SPEA, namely SPEA2 [23], is a powerful 

algorithm with the ability to overcome its 

predecessor shortcomings and achieve acceptable 

results. This updated method was the basis of our 

previous hybrid algorithm, namely Strength 

Pareto Evolutionary Algorithm2 Tabu Search 

(SPEA2TS) [24], which uses the exploration 

capacity of SPEA2 along with the power of TS in 

neighborhood research to find Pareto optimal 

solutions in different multi-objective problems.  

A majority of the current MOEAs do not employ 

the decomposition concept. The manner these 

algorithms adopt is considering the whole MOP, 

and do not affiliate each separate solution with 

any particular scalar optimization problem [25].  

This idea is adopted by a limited number of 

MOEAs to a certain amount [26-28], and  

Multi-Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) is the more recent one 

[25]. MOEA/D transforms the task of 

approximating the Pareto front (PF) into a number 

of single-objective optimization sub-problems 

using the traditional aggregation methods, and 

then optimizes these sub-problems simultaneously 

[6]. Considering the best solution found so far (i.e. 

from the start of algorithm’s run) at each 

generation, the population is composed of each 

sub-problem. According to the distances between 

their aggregation coefficient vectors, these  

sub-problems find the neighborhood relations 

among them. The only information used for 

optimization of each sub-problem by MOEA/D 

comes from its neighbors.  

In this work, we improved our earlier work 

(SPEA2TS) [24] by taking the advantage of 

MOEA/D as the optimization tool beside the 

capabilities of Tabu Search for dealing with 

various multi-objective optimization problems. 

Our goal was to exploit the advantages of EA and 

TS to achieve an integrated method to cover the 

totality of the Pareto front by uniformly 

distributed solutions. 

The structure of this paper is as what follows. 

Section 2 introduces the main concepts of the 

multi-objective optimization. Section 3 provides a 

comprehensive literature review on the different 

methods used for solving MOPs. The Multi-

Objective Evolutionary Algorithm based on 

Decomposition is described with more details in 

Section 4, while as a general overview of our 

proposed method, MOEA/D-TS is available in 

Section 5. Section 6 provides the experimental 

settings that are used in Section 7 to elaborate the 

experimental results for selected benchmark 

problems. Finally, a brief summary and 

conclusion are provided in Section 8. 

2. Multi-objective optimization  

We could define a multi-objective optimization 

problem as follows [6]: 

Max         F x = f x ,f x ,...,f xm1 2
 

     Subject to 

( ) 0, 1,2,...,
i

g x i q   

    ( ) 0, 1,2,...,
i

h x i p   

(1) 

where, 
1

( ,..., ) n
nx x x X R   is  called the 

decision variable, and 𝑋 is the 𝑛-dimensional 

decision space. ( )( 1,..., )f x i m
i

  is the i-th 

objective to be minimized, ( )( 1,2,..., )g x j q
j

  

defines the 𝑗-th inequality constraint, and 

( 1,2,..., )
j

h j p  defines the 𝑗-th equality 

constraint. Furthermore, all the constraints 

determine the set of feasible solutions, which is 

denoted by Ω. To be specific, we tried to find a 

feasible solution 𝑥 ∈ Ω minimizing each objective 

function ( )( 1,..., )
i

f x i m in F. 

Suppose ,x v  . We say x dominates v ( )x v  

if and only if ( ) ( )
i i

f x f v  for every

{1,2,..., }i m , and ( ) ( )
j j

f x f v for at least 

one index {1,2,..., }j m . A solution vector 𝑥 is 

said to be Pareto optimal with respect to Ω if 

:z z x . The set of Pareto optimal 

solutions (PS) is defined as 

| : }{PS zx z x   . Finally, the Pareto 

optimal front (PF) is defined as all ( )f x , where 

x PS . It should be mentioned that usually 

multi-objective optimization problems (MOPs) 

refer to those with two or three objectives, while 

those with more than three objectives are known 

as many-objective optimization problems 

(MaOPs) [29]. 

3. Related work  

Recently, the development of EAs to solve  

multi-objective optimization problems has had 

considerable progresses [12-16, 30-31]. One 

significant goal in the field of MOEAs is to find a 

set of representative Pareto optimal solutions in a 

single run. Try to produce a set of Pareto optimal 

solutions to represent the whole PF as diverse as 

possible. For a desired MOP, a Pareto optimal 

solution is defined as a set of optimal solution for 

all scalar optimization problems with the aim of 

optimizing their aggregation function [30]. Hence, 

the PF approximation can be divided into a 

number of scalar objective optimization  
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sub-problems and is the basis of many previous 

mathematical programming methods [32].  

The first multi-objective GA that uses  

Pareto-based ranking and niching techniques 

explicitly together is MOGA [18]. This algorithm 

encourages the search toward the true Pareto 

front, while maintaining diversity in the 

population. Hence, it could be a considerable 

evidence to demonstrate how Pareto-based 

ranking and fitness sharing can be integrated in a 

multi-objective GA. The concept of elitism has 

not yet been considered in this method. In another 

non-elitist strategy, NSGA, the population is 

classified into non-dominated fronts, and then a 

dummy fitness value is assigned to each front (F1, 

F2,..) using a fitness sharing function so that the 

worst fitness value assigned to Fi is better than the 

best fitness value assigned to Fi+1. 

In the MOEA literatures, many algorithms use 

population categorization based on the non-

dominance strategy to assign a fitness value based 

on the non-dominance rank of the members [6]. 

For example, Non-dominated Sorting Genetic 

Algorithm II (NSGAII) [10], proposed by Deb et 

al. in 2002, uses the crowding distance method 

and the elitism strategy to obtain a uniform spread 

of solutions along the best-known Pareto front 

without using a fitness sharing parameter [8]. 

Zitzler et al. [33] have proposed the strength 

Pareto evolutionary algorithm (SPEA) [22], which 

assigns better fitness values to non-dominated 

solutions using a ranking procedure at the  

under-represented regions of the objective space 

[8]. SPEA is among the first techniques that 

clearly outperformed the (non-elitist) alternative 

approaches. It employs a fixed size external list E 

to store non-dominated solutions that have been 

investigated during the search hitherward, and a 

strength value is defined for each solution y E . 

Finally, according to these strength values, the 

ranking of the solution is calculated.  SPEA2 [23], 

which is also based on the elitism strategy, 

differentiates between solutions with the same 

rank using a density estimation measure, where 

the density of a solution is a simple inverse of the 

distance of its k-th nearest neighbor in objective 

function space [8].  

In contrast to the mentioned algorithms, which 

mainly rely on Pareto dominance to guide their 

search, MOEA/D [25] makes use of the traditional 

aggregation methods to transform the task of 

approximating the Pareto front (PF) into a number 

of single-objective optimization sub-problems. 

During the years, many metaheuristic algorithms 

applied the idea of decomposition for MOPs [34] 

[35]. In the two-phase local search (TPLS), for 

instance, at first, an initial solution is generated by 

optimizing only one single-objective, and then a 

search is started from this solution exploiting for 

non-dominated solutions based on aggregations of 

the objectives. The multi-objective genetic local 

search (MOGLS) tries to optimize all 

aggregations produced by the weighted sum 

approach or Tchebycheff approach simultaneously 

[36]. Various multi-objective problems with 

different characteristics like many objectives, 

discrete decision variables, and complicated 

Pareto set could achieve admissible results using 

MOEA/D [37, 38].  

Moreover, some hybrid algorithms have employed 

the MOEA/D strategy as their basic element. For 

example, MOEA/D with differential evolution and 

particle swarm optimization has been proposed by 

Mashwani [39]. Ke et al.  [17] have proposed a 

MOEAD-ACO, in which each ant (i.e. agent) is 

responsible for solving one sub-problem and 

records the best solution found so far for its sub-

problem during the search. An ant combines 

information from its group’s pheromone matrix, 

its own heuristic information matrix, and its 

current solution to construct a new solution. Li 

and Landa-Silva [40] have combined MOEA/D 

and Simulated Annealing (SA) to solve MOPs. In 

their proposed method, EMOSA, the weight 

vector of each sub-problem is adaptively modified 

at the lowest temperature in order to diversify the 

search towards the unexplored parts of the Pareto 

optimal front. Moreover, MOEA/D has been used 

to solve various kinds of problems (e.g. [37, 38]). 

This paper proposes a combination of MOEA/D 

and Tabu Search (TS) [4] to achieve a new 

manner for solving multi-objective optimization 

problems.   

This improved hybrid algorithm, namely 

MOEA/D-TS, uses the parallel computing 

capacity of MOEA/D for a comprehensive 

exploration of the search space along with the 

exploitation power of TS for discovering Pareto 

optimal solutions. The following sections provide 

more details about the proposed method. 

4. Multi-objective evolutionary algorithm 

based on decomposition 

Decomposition of MOP into N scalar optimization 

sub-problems and solving them altogether is a 

general manner of MOEA/D. By exchanging 

information at each generation, these  

sub-problems collaborate with each other [25]. 

There are some primary features of MOEA/D: (1) 

In the current population, there is the best solution 

found so far per each scalar optimization problem. 

(2) There are many sub-problems in the 
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neighboring of each scalar optimization problem 

so that each two neighbor sub-problems have 

analogous optimal solutions. (3) In MOEA/D, 

information from neighboring of each  

sub-problem is used for its optimization. (4) Since 

each solution is associated with a scalar 

optimization problem, using scalar optimization 

methods in MOEA/D is very common [1]. 

Although decomposition of a high-dimensional 

MOP into a set of simpler and low-dimensional 

sub-problems is interesting, without a prior 

knowledge about the objective function, it is not 

clear how to decompose it [33]. Moreover, it is 

difficult to use such a decomposition method to 

solve all the multi-objective optimization 

problems (MOPs) because their objective 

functions are commonly conflicting with one 

another. That is to say, changing decision 

variables will generate incomparable solutions. 

Basically, a separability function means that the 

decision variables involved in the problem can be 

optimized independent from any other variable, 

while a non-separability function means that there 

exist interactions between at least two decision 

variables. Formal definition of separable and  

non-separable functions can be found in [33]. 

There are several approaches available to convert 

the problem of Pareto front approximation to 

some scalar optimization problems [25]. The 

weight sum and Tchebycheff approach are the 

most popular ones [41,42]. In this research work, 

we employed the Tchebycheff approach as the 

basic method, although the results of applying 

weight sum approach was also evaluated. 

4.1. Tchebycheff and weighted sum approaches 

Suppose that 
1

( ,..., )Tm    shows a collection 

of weight vectors and 
*

Z , * * *
1

( ,..., )TmZ z z is 

the ideal vector, where * max{ ( ) | }
i i

Z f x x   

for i = 1, . . . , m. Using the Tchebycheff 

approach, decomposition of the main problem into 

N scalar sub-problems could be done in a way that 

the objective function of the j-th sub-problem is: 

Minimize 

max1

* *
( | , ) [ | ( ) |]i m

te
g

j j
X z f X Z

i i i
   

 

Subject to x   

(2) 

where, 
1

( ,..., )T
j

m
j j

   [25].  

In the weighted sum approach, if 
1

1
m

i
i




  for 

weight vector λ, then the optimal solution to the 

following scalar optimization problem is a Pareto 

optimal point to (1): 

Maximize
1

( | ) ( )
m

j jws
i i

i

g X f X 


 
 

Subject to x   

(3) 

 

If PF is concave (convex in the case of 

minimization), this approach could work well. 

However, not every Pareto optimal vector can be 

obtained by this approach in the case of non-

concave PFs. Also it should be noted that 

minimization of z by MOEA/D is not essential 

when the weight sum approach is used [25]. 

MOEA/D, which uses the Tchebycheff approach, 

keeps some information at each generation t 

including:  

(1) N individual X1,…,XN ∊ Ω (population), 

where the current solution to the i-th 

subproblem is Xi;  

(2) FV1, …, FVN, where FVi = F(Xi);  

(3) ( ,..., )
1

T
z z z m is the vector of the best 

value found so far for objective fi; and 

(4) An External Population (EP), which is used 

to store non-dominated solutions found 

during the search. 

The desired algorithm receives MOP as input and 

output EP. In this process, other inputs include the 

number of considered sub-problems, N, the 

number of weight vectors in the neighborhood of 

each weight vector, T , a uniform distribution of N 

weight vectors λ1, …, λN, and the maximum 

number of generations, genmax. In accordance with 

[24,43], the proposed method utilizes a binary 

tournament strategy as the selection operator. Two 

important procedures in evolutionary algorithms, 

recombination, and mutation operators apply on 

different individuals in order to replace the old 

population by the resulting off-spring. Also it is 

necessary to keep the non-dominated solutions 

found during the search; for this purpose, 

MOEA/D employs an archive namely the external 

population (EP). The overall pseudo-code of 

MOEA/D is shown in Algorithm 1 [25]. 

During the initialization step, for each index I,  

1
( ) { ,..., }TB i i i is computed. The Euclidean 

distance is used in order to compute the proximity 

of any two weight vectors, and also always  

i ∈ B(i). As j ∈ B(i), the j-th sub-problem is 

considered as a neighbor of the i-th sub-problem 

[1]. The T neighbors around the i-th sub-problem 
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are considered in the i-th pass of the loop in Step 

2 [40]. The available solutions to the neighbors of 

the i-th sub-problem are represented by kx  and 

jx in part 1 of Step 2; hence, the resulting  

off-spring probably is a good candidates to be 

considered as an appropriate solution for the i-th 

sub-problem. When y violates any constraint, 

and/or optimizes the i-th gte, a heuristic is 

employed to repair y in Step 2.3. Thus the 

obtained solution y′ is feasible with a lower 

function value for the neighbors of the i-th sub-

problem. Step 2.4 considers the whole neighbors 

of the i-th sub-problem, and if y′ accomplishes 

better than 
j

x  due to the j-th sub-problem, it 

replaces 
j

x  with y′. Since finding the actual ideal 

vector 
*z  is often very time-consuming, z is used, 

and Step 1 initializes and Step 2.5 updates it. At 

the end off Step 2.6, the external population EP 

utilizes the newly-generated solution y′ for its 

update. 

In order to compare the effects of the 

decomposition methods on the results obtained, 

we also considered the weight sum approach in 

MOEA/D. In the whole document, T-MOEA/D 

stands for MOEA/D using the Tchebycheff 

approach as a decomposition method (i.e. using gte 

function (2)) [25], whereas W-MOEA/D 

represents MOEA/D that decomposes MOP using 

the weight sum approach (i.e. using gws function 

(3)).  

 
Algorithm 1. The MOEA/D general framework 

 
Step 1 Initialization 

    Set EP   and gen = 0. 

    Generate an initial population 1{ ,..., }
0

NP X X  and initialize ( ,..., )
1

Tz z z m using the lowest value for f i found in the initial 

population as 
i

z . Set ( )FV F Xi i . 

    Consider any two weight vectors, then calculate between them, and then work out the T closest weight vectors to each weight vector. For 

each I = 1,…, N, set ( ) { , ..., }1B i i iT , where , ...,1
i i

T    are the T closet weight vectors to 
i

 . 

Step 2 Update: For I = 1, …, N do 

1.   Reproduction: In a random manner, pick out two indices k and l from B(i), and then utilizing appropriate genetic operators generate a 

new solution y from 
k

X and 
l

X . 

2.   Mutation: Apply Mutation operator on y to produce Y  . 

3.   Update of z: For each j = 1, …, m, if  ( )f Y zj j
  , then set ( )z f Yj j

 . 

4.   Update of Neighboring Solutions: For each index ( )j B i , if ( | , ) ( | , )
j j jte te

g Y z g X z   , then set  
j

X Y   and 

( )
j

FV F Y  . 

5.   EP Update: 

- Remove the whole vectors dominated by ( )F Y   from EP. 

- If no vectors in EP dominates ( )F Y  , add ( )F Y   to EP. 

6.   Replacement: Use binary tournament replacement strategy 

Step 3 Stopping Criteria: If gen = genmax, stop and output EP. Otherwise, gen = gen + 1, go to Step 2.  

5. Hybrid multi-objective evolutionary 

algorithm/D-Tabu search   

The main idea behind this work was to introduce a 

combination of recently developed multi-objective 

optimization algorithms, MOEA/D and Tabu 

Search, for an extensive and precise probe on 

different multi-objective problems. The result of 

this hybrid method is Pareto optimal solutions 

with uniform distribution that cover the Pareto 

front as much as possible [24]. Tabu search (TS), 

proposed by Glover [4], is a kind of metaheuristic 

algorithm that aims at finding good quality 

solutions in an admissible time using a local 

search method. During the process of solution 

improvement, at first, the problem space was 

searched by TS for a potential solution x, and then 

other similar solutions in its neighboring N(x) 

were checked. 

Trapping in the local optima were avoided in TS 

using a tabu list that remembers the history of the 

previous searches. Then the candidate solution 

with a better fitness value in the N(x) was selected 

as a destination for algorithm movement. The only 

forbidden moves are those leading to the solutions 

on the tabu list. The pseudo-code of Tabu Search 

is shown in Algorithm 2 [42]. 
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Algorithm 2. TS general framework 

Step 1: In a search space S, consider an initial solution  

Set 
*

i i  and k = 0  

Step 2: k = k + 1  

Make a subset of solutions in N(i,k) in a way that:  

- The tabu movements are not chosen  
- The aspiration criterion a(i,m) is applied  

- At iteration k, N(i,k) is the neighborhood of the current 

solution i. 

Step 3: Among N(i,k), find the best solution i  , then apply 

i  better i   

Step 4: If 
*

( ) ( )f i f i , then apply 
*

i i   

Step 5: Update the list T and aspiration criterion.  

Step 6: If a stop condition is reached, then stop. Otherwise, 

return to Step 2.  

For each individual, MOEA/D directly defines a 
single-objective optimization sub-problem, and 
then the computational effort is distributed among 
these sub-problems. This process is among the 
major reasons why MOEA/D outperforms NSGA-
II-DE on a set of continuous test instances with 
complicated PS shapes [30]. The proposed method 
in this manuscript is based on Zhang and Hui [25], 
and our previous work [24] was based on 
cooperation between SPEA2 and TS. This method, 
namely MOEA/D-TS, employs a comprehensive 
search in two levels, one global and one local, 
among problem spaces. The areas with high 
potential solutions are found during the first level 
search, and at the second level, a local search tries 
to explore the best solutions with good 
distribution. In what follows, the main steps of the 
proposed method are described: 

 Applying a global search to discover multiple 
optimal solutions at the first step is the 
MOEA/D’s responsibility. A Pareto front of 
non-dominated solutions is produced within 
each iteration by MOEA/D, and then it 
generates and sets them as the starting points 
for the next steps.  

 In the next step, a local search should be done 
among the solutions obtained from MOEA/D. 
The Improved Diversificator Tabu Search 
(IDTS) [24] is a good candidate to perform a 
local search in order to detect new solutions 
[24, 43]. The covering of the Pareto front with 
well-distributed solutions is a significant aim 
in this step. 

The local search using IDTS for multi-objective 
problems includes two steps: 

1.  The first step detects a less explored zone of 
the search space, and performs a local search 
in order to discover new solutions. It finds two 
most distant and consecutive points (SL1 or 
SL2) on the Pareto Front. Then it calculates 
the middle point Cm (the middle vector cost of 
SL1 and SL2) to mark the best solution 
belonging to the hatched dominant zone Cm.  

2. During the second step, this procedure 
continues IDTS between SL1 and Cm (finding 
a new point Cm1) and between Cm and SL2 
(finding a new point Cm2) to explore the best 
solutions in the specified dominant regions 
[24].  

Figure 1 shows the process of IDTS for a local 
search in a bi-objective problem space. This 
method, in comparison with the simple DTS [43], 
reduces unexplored areas within the problem 
space and distributes the resulting solution on the 
Pareto front uniformly [24]. 

 
Figure 1. Search space for IDTS. 

 

As mentioned earlier, in order to update the old 
population with promising solutions discovered by 
IDTS, the algorithm employs the binary 
tournament strategy. This population is used as an 
initial solution in the next generation. Figure 2 
shows the pseudo-code of the proposed algorithm. 

 
Figure 2. Flow chart of proposed algorithm (MOEA/D-

TS). 

6. Experimental study 

In order to evaluate the capability of the proposed 

method and compare it with the other works in 

this field, namely SPEA, COMOEATS [43], and 

our previous algorithm SPEA2TS [24], the similar 

parameters as in [43] were considered and all 

three methods were implemented separately. The 

population size N was set to 100 and T in  

f1(SL1) f1(SL2)

f2(SL1)

f2(SL2)

f1

f2

SL1

SL2

Cm Cm2

Cm1

Pareto front

S
Randomly generate 
an initial population 

of size N

Apply MOEA/D as in 
algorithm 1 and send 

EP to the TS

Do IDTS with all 
solutions of the EP

Integrate the resulting solutions 
into archives for the next iteration 

of the MOEA/D

Stop condition is 
reached

Stop
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MOEA/D-TS was considered 10% of N for all of 

the test instances. Table 1 illustrates the desired 

values for all parameters [43]. 

Table 1. Experimental parameters. 

Parameter Value 

Initial Pop-Size (N) 100 

Generation#   400 

Crossover Probability (Pc) 0.9 
Mutation Probability (Pm) 0.01 

Tabu list size 50 

Number of TS iterations 200 
Tabu Life 50 

The performance of the algorithm was studied on 

widely used bi-objective Zitzler-Deb-Thiele’s test 

suite, namely (ZDT1 to ZDT4 and ZDT6) [44]. 

The test problems in the ZDT package introduce 

five basic functions including a distribution 

function 1f , a distance function g , and a shape 

function 2f , in which 1f  tests the ability of an 

MOEA to maintain diversity along the PF, 

function g  is used for testing the ability of an 

MOEA to converge to PF, and function 2f  is used 

to define the shape of PF. These various test 

problems have different characteristics. 

Specifically, ZDT3 has a disconnected PF, which 

is partly convex and partly concave; ZDT4 

contains a large number of local PFs and ZDT6 

has a non-uniform fitness landscape. All these test 

instances are minimization of the objectives, and 

except ZDT5, which is binary-coded, the others 

are real-coded.  

Unlike test problems in the ZDT suite, which are 

all bi-objective, in the DTLZ package, the test 

problems are scalable to have any number of 

objectives [33]. Each one of the nine problems in 

the DTLZ test suite has many unique 

characteristics. For instance, DTLZ1 and DTLZ3 

contain a large number of local PFs in their fitness 

landscape, and the Pareto optimal solutions of 

DTLZ4 have highly non-uniform distributions. 

According to the similar research works [6, 25], 

here, we evaluated the performance of the 

proposed method on DTLZ1 and DTLZ2 with 

three objective functions. Table 2 shows the 

properties of these test problems. 

Table 2. Experimental parameters. 
Test function Search space Objectives Pareto front type 

ZDT1 [0,1]n 

( )
1 1

f x x  

( ) ( )[1 ( ) / ( )]
2 1

f x g x f x g x   

2( ) 1 9( ( 0.2) ) / ( 1)
2

ng x x n
i i

    
 

convex 

ZDT2 [0, 1]n 

( )
1 1

f x x  

2( ) ( )[1 ( ( ) / ( )) ]
2 1

f x g x f x g x   

2( ) 1 9( ( 0.2) ) / ( 1)
2

ng x x n
i i

    
 

Non-convex 

ZDT3 [0, 1]n 

( )
1 1

f x x  

1( ) ( )[1 ( ) / ( ) sin(10 )]
2 1 1( )

x
f x g x f x g x x

g x
  

 

2( ) 1 9( ( 0.2) ) / ( 1)
2

ng x x n
i i

    
 

disconnected 

DTLZ1 [0, 1]n 

( ) (1 ( ))
1 1 2

f x g x x x 
 

( ) (1 ( )) (1 )
2 1 2

f x g x x x  
 

( ) (1 ( ))(1 )
3 1

f x g x x  
 

2( ) 100( 2) 100( {( 0.5) cos[20 ( 0.5)]}
3

ng x n x x
i i i

        

Non-convex 

DTLZ2 [0, 1]n × [-1, 1]n-2 

1 2( ) (1 ( ))cos( )cos( )
1 2 2

x x
f x g x

 
   

1 2( ) (1 ( ))cos( )sin( )
2 2 2

x x
f x g x

 
   

1( ) (1 ( ))sin( )
3 2

x
f x g x


   

2( )
3

ng x x
i i

  
 

Non-convex 

There are some well-known metrics that are used 

to have comparison among the developed 

approaches [45]. These four metrics include:  

Spacing: In an objective space, this metric 

expresses the uniformity of the solution 

distribution. The spacing metric calculates the 

distance between solutions and gives an 

interesting indication on the convergence of the 

considered method [46].  
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Contribution: This metric evaluates the 

proportion of Pareto solution brought by each one 

of the two (or three) foreheads F1 and F2 (and F3) 

[47]. 

Entropy: Solution entropy should be calculated to 

evaluate the distribution of solutions on the Pareto 

front. The closer the values to 1, the better the 

solution distribution. 

Metric S: This metric (that is also known as 

hyper-volume) measures the quality for solution 

sets in Pareto optimization. The Pareto front and a 

desired reference point are considered, and this 

metric calculates the hyper-volume of the multi-

dimensional region between them [46]. 

7. Results and discussion   

In this section, some simulation results and 

comparisons that prove the potential of  

MOEA/D-TS are presented. Table 3 represents a 

comparison between the results obtained using 

different algorithms (SPEA, COMOEATS, and 

SPEA2TS) at the level of four mentioned metrics 

on ZDT1 benchmark. The attained results of 

applying MOEA/D-TS on this convex POF show 

significant improvements in all the four metric 

values. The different values related to the spacing 

metric prove the capability of MOEA/D-TS to 

generate more uniform Pareto optimal solutions 

than the three other methods. In this way, more 

discovered zones can be covered with a good 

uniform distribution. Moreover, the outcomes of 

table 3 depict that using the Tchebycheff approach 

as a decomposition method in MOEA/D-TS (i.e. 

T-MOEA/D) in most cases (except metric S) leads 

to better results in comparison with exploiting the 

weighted sum approach for decomposition (i.e. 

W-MOEA/D). 

The statistics of the values obtained by each 

algorithm in ZDT2 are represented in table 4. 

Here, we are faced with a non-convex POF. It is 

obvious from the results that MOEA/D-TS 

outperforms other methods due to the three 

metrics except entropy. Although the new method 

did not have enough power to overcome 

SPEA2TS, it achieved better results in 

comparison with the other algorithms.  

Tables 5-7 depict the various results obtained by 

each algorithm in ZDT3 (with a discontinuous 

PF), ZDT4, and ZDT6 test functions, respectively. 

For these problems, our proposed algorithm 

shows its ability to achieve interesting results at 

the level of all four metrics.  

Tables 8 and 9 compare the results obtained by 

different algorithms in the three-objective 

problems DTLZ1 and DTLZ2. It is quite clear 

from these results that MOEA/D-TS performs 

much better than the other algorithms at the level 

of four criteria, and using the Tchebycheff 

decomposition approach compared with the 

weighted sum approach mainly achieves more 

satisfactory outcomes in these three-objective 

instances.     

According to the attained results presented in 

table 3-9, the MOEA/D-TS is able to handle 

various multi-objective problems having two and 

three objective and convex, non-convex, and 

discontinuous POFs. In addition, it is obvious that 

T-MOEA/D achieves better results than  

W-MOEA/D at most of the metrics except metric 

S at ZDT1, ZDT2, and DTLZ1, and also metric 

Spacing at ZDT3. These results may be due to the 

one weakness of the Tchebycheff approach, in 

which the aggregation function is not smooth for 

continuous MOPs (i.e. ZDT1, ZDT2, and DTLZ1) 

[25]. In this case, calculation of the hyper-volume 

of the multi-dimensional region between Pareto 

front and desired reference point (i.e. metric S) is 

complicated. 

In order to visually compare the performance of 

the four algorithms, the solutions obtained by 

them in these test problems are shown in figures 4 

and 5. These figures show the distributions of the 

solutions on Pareto fronts in 30 independent runs. 

The comparisons mainly focus on two aspects: 1) 

the coverage of the solutions obtained to the true 

PF; and 2) the diversity of the solutions obtained.

Obviously, both SPEA and COMOEATS cannot 

locate the global PF in any instance, and the 

results attained by SPEA2TS are not completely 

satisfactory. In contrast, MOEA/D-TS can 

approximate the PFs of these instances quite well. 

These solutions obtained by MOEA/D-TS have 

covered most of less discovered zones, with a 

uniform distribution that confirm our claim about 

the effect of IDTS to cover most of the 

unexplored zones of the Pareto front. These 

results indicate that the diversity and coverage of 

solutions obtained by the algorithm MOEA/D-TS 

are better than those obtained by SPEA, 

COMOEATS, and even SPEA2TS on these test 

problems.  
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Table 3. Metrics values for ZDT1. 
             Algorithm 

Metric    

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.0203861 0.0256606 0.0234362 0.0206327 0.018847 

Contribution 0.492958 0.507042 0.556231 0.56035 0.591044 

Entropy 0.360803 0.367399 0.505162 0.58183 0.61354 
Metric S 0.5524335 0.55787 0.56085 0.55572 0.55924 

Table 4. Metrics values for ZDT2.
                  Algorithm 

Metric 

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.0203861 0.0276606 0.018173 0.014208 0.011386 

Contribution 0.492958 0.507092 0.566471 0.58363 0.62043 

Entropy 0.360803 0.371775 0.517232 0.42522 0.48803 
Metric S 0.5524335 0.55689 0.542853 0.40917 0.47261 

Table 5. Metrics values for ZDT3. 
                     Algorithm 

Metric 

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.0206785 0.0116797 0.0074512 0.002258 0.009341 

Contribution 0.496454 0.507042 0.627452 0.84512 0.95386 
Entropy 0.365199 0.373243 0.387123 0.402102 0.449638 

Metric S 0.750998 0.741164 0.725361 0.677366 0.651146 

Table 6. Metrics values for ZDT4. 
                  Algorithm 

Metric 

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.0224316 0.0263217 0.023267 0.018803 0.012651 
Contribution 0.462758 0.507092 0.523716 0.58363 0.60342 

Entropy 0.362131 0.40721 0.503571 0.52058 0.54507 

Metric S 0.529386 0.52309 0.5201453 0.50152 0.48713 

Table 7. Metrics values for ZDT6. 
             Algorithm 

Metric    

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.0220126 0.0270117 0.023267 0.018803 0.012651 

Contribution 0.483217 0.490278 0.523716 0.58363 0.60342 

Entropy 0.362891 0.41834 0.503571 0.52058 0.54507 
Metric S 0.741834 0.725037 0.720341 0.693617 0.67571 

Table 8. Metrics values for DTLZ1. 
             Algorithm 

Metric    

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.27318 0.24533 0.13867 0.10391 0.08651 

Contribution 0.52174 0.57723 0.60265 0.63241 0.65829 

Entropy 0.394321 0.43145 0.577141 0.70148 0.72328 
Metric S 0.83307 0.82198 0.80721 0.71057 0.75251 

Table 9. Metrics values for DTLZ2. 
             Algorithm 

Metric    

SPEA COMOEATS SPEA2TS MOEA/D-TS 

W-MOEA/D T-MOEA/D 

Spacing 0.15257 0.12324 0.10015 0.08391 0.05651 

Contribution 0.54812 0.57034 0.59107 0.67763 0.69135 

Entropy 0.362031 0.39557 0.421972 0.53261 0.58204 
Metric S 0.78307 0.731078 0.70681 0.67152 0.63142 

 

8. Summary and conclusion 

In this paper, we proposed a hybrid method 

derived from Multi-Objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) 

and Tabu Search (TS) for solving various multi-

objective optimization problems. This algorithm, 

namely MOEA/D-TS, at its first level uses the 

capabilities of MOEA/D for exploration of the 

problem space by decomposing MOP into single-

objective optimization sub-problems. An 

Improved Diversificator Tabu Search (IDTS) is 

utilized to perform local search among the 

problem space at the second level. The main goal 

of IDTS is achievement to a Pareto front with 

minimum unknown parts and well-distributed 

solutions. The experimental results considering 

seven benchmarks with different numbers of 

objective functions and various POF demonstrate 

that MOEA/D-TS has more functionality than 

SPEA, COMOEATS, and SPEA2TS to discover 

solution sets with a better quality. Also the results 

obtained indicate that using the Tchebycheff 

approach as a decomposition method in these 

kinds of problems will lead to better values than 

using the weighted sum decomposition approach. 

The main reason is that the weighted sum 

approach is compatible with concave (convex in 

the case of minimization) PFs, and not every 

Pareto optimal vector can be obtained by this 

approach in the case of non-concave PFs. 
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Figure 3. Solutions obtained by SPEA, COMOEATS, SPEA2TS, and MOEA/D-TS on ZDT test functions. 
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  Figure 4. Solutions obtained by SPEA, COMOEATS, SPEA2TS, and MOEA/D-TS on DTLZ test function. 
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 هدفه-برای حل مسائل چند و جستجوی ممنوعه تجزیه مبنای بر هدفه-چند تکاملی الگوریتمترکیب 

 

  *فاطمه کریمی و شهریار لطفی

 .دانشگاه تبریز، تبریز، ایران، علوم کامپیوترگروه  

 01/60/6602 پذیرش؛ 62/00/6600 بازنگری؛ 60/60/6600 ارسال

 چکیده:

 نها  بهه جدید روش یک از ما پژوهش این در. اشندبمی متعارف کاملاً واقعی دنیای کاربردهای از بسیاری در متضاد، اهداف با سازیبهینه گوناگون مسائل

 حهل بهرای نهوین ایشهیو  بهه دستیابی جهت ،(TS) ممنوعه جستجوی هایقابلیت کنار در (MOEA/D) تجزیه مبنای بر هدفه-چند تکاملی الگوریتم

 قابلیهت از ،MOEA/D-TS نها  بهه بهبودیافتهه، ترکیبهی الگهوریتم ایهن. ایهمنمهود  گیریبهر  متضاد هدف چند یا دو با هدفه-چند سازیبهینه مسائل

 کهردن بهرداریبهر  ما، هدف. نمایدمی استفاد  پرتو یبهینه هایحلرا  کشف برای محلی، جستجوی در TS قدرت کنار در MOEA/D موازی پردازش

 بهه شهد توزیه  ههایحلرا  با توپرِ یجبهه کامل پوشش برای یکپارچه روش یک به دستیابی جهت ممنوعه جستجوی و تکاملی هایالگوریتم مزایای از

 و ZDT معهروف آزمهون هایمجموعه روی بر مختلف معیارهای اساس بر آن کارآیی پیشنهادی، روش هایقابلیت ارزیابی منظور به. باشدمی نرمال شکل

DTLZ با پذیر،تفکیک هدف تواب  با SPEA، COMOEATS و SPEA2TS قهادر پیشهنهادی روش آمهد ، دست به نتایج اساس بر. استشد  مقایسه 

 .نماید ئهاار را بخشیرضایت کاملاً نتایج و کرد  غلبه پیشین هایالگوریتم بر توجهی قابل طور به است

 ، جستجوی ممنوعه.تجزیه مبنای بر هدفه-چند تکاملی الگوریتمترکیبی، های تکاملی، روش هدفه، الگوریتم-مسائل چند :کلمات کلیدی

 


