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Abstract 

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of 

self-organized and complex activities encountered in the real world. This paper presents the effect of 

heterogeneously distributed incremental least mean-square (LMS) algorithm with ideal links on the quality 

of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defined 

based on previously calculated signal-to-noise ratio (SNR), is assumed to be the informed nodes that collect 

data and perform in-network processing, while the remaining nodes are assumed to be uninformed and only 

participate in the processing tasks. As our simulation results show, the proposed algorithm not only 

considerably improves the performance of the Distributed Incremental LMS algorithm in the same 

conditions but also proves a good accuracy of estimation in cases where some of the nodes make unreliable 

observations (noisy nodes). Also studied is the application of the same algorithm on the cases where node 

failure happens.  

 

Keywords: Adaptive Networks, Distributed Estimation, Least Mean-Square (LMS), Informed Nodes, Mean 

Square Deviation (MSD).  

1. Introduction 

Wireless sensor networks (WSNs) consist of a 

large number of sensor nodes and a base station. 

The nodes in a wireless sensor network are 

usually arranged randomly inside the region of 

interest. The base station is engaged to give 

commands to all the sensor nodes and collect data 

from them. A sensor node is a tiny device that 

includes three essential components: a sensing 

sub-system for data acquisition from the physical 

surrounding environment, a processing sub-

system for local data processing and storage, and 

a wireless communication sub-system for data 

transmission. In many WSN applications, the final 

goal is to get an exact estimate of an unknown 

parameter based on the temporal data obtained by 

spatially distributed sensors [1-4]. This estimation 

problem can be solved by either a centralized 

approach (with fusion center) or a decentralized 

one [5]. In many applications, however, sensors 

need to make estimation in a constantly changing 

environment without having available a statistical 

model for the underlying processes of interest [6]. 

This issue motivated the development of 

distributed adaptive estimation algorithms or 

adaptive networks. An adaptive network is a set of 

adaptive nodes that observe space–time data and 

work together, according to some cooperation 

protocols, in order to estimate a parameter [7–14]. 

Also in [15], they could manage the resource 

problem embracing the adaptive control of the 

input and output traffic flows by coping with the 

random fluctuations of the input traffic to be 

processed and the states of the utilized TCP/IP 

connections. From an application viewpoint, it 

guarantees, by design, reliable  transport of data 

and also allows the vehicular client to perform 

flow control in order to adaptively match the 

transmission rate of the serving Road Side Unit 

(RSU) to the actual (time-varying) operating 

conditions of the mobile device used. 

Propagation and hybrid, which are composed of 

back-propagation learning algorithm and least 

square method, are regarded as two learning 

methods generally used in adaptive neuro-fuzzy 
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inference system (ANFIS) models to specify the 

relationship between input and output and to 

determine optimized distribution of membership 

functions [16]. Also in [17], the authors have 

developed an ANFIS-based model to estimate the 

wind turbine power coefficient in a wind farm. 

The results achieved clearly indicate that the 

proposed ANFIS model is efficient to provide 

accurate estimations. 

Depending on the manner by which the nodes 

communicate with each other, they may be 

referred to as incremental algorithms or diffusion 

algorithms.  In the former, a cyclic path through 

the network is required, and nodes communicate 

with neighbours within this path. In the latter, 

nodes communicate with all of their neighbours, 

and no cyclic path is required. Recently, several 

algorithms have been developed to make use of 

this nature of the sensor nodes, and cooperation 

schemes have been formalized to improve 

estimation in sensor networks. Various algorithms 

have been proposed to allow each node share 

information locally with its neighbours and to 

estimate parameters using the information; these 

include incremental least mean squares (LMS) 

[8], diffusion LMS [13,18], diffusion RLS [9], 

and diffusion Kalman filtering [19]. The LMS 

algorithms are a class of adaptive filters used to 

imitate a desired filter by finding the filter 

coefficients that are related to the generation of 

the least mean squares of the error signal (i.e. the 

difference between the desired and the actual 

signal) [20]. The incremental solution suffers 

from a number of limitations for applications 

involving adaptation and learning from streaming 

data [21]. First, the incremental strategy is 

sensitive to the agent or link failures. If an agent 

or link over the cyclic path fails, then the 

information flow over the network is interrupted. 

Second, starting from an arbitrary topology, 

determining a cyclic path that visits all agents is 

generally an NP-hard problem. Third, cooperation 

between agents is limited to each agent allowed to 

receive data from one preceding agent and to 

share data with one successor agent. In contrast, 

the incremental-based networks present excellent 

estimation performance, particularly in small size 

networks, while diffusion based networks are 

more robust to link and node failures. In most 

previous works [8, 13, 18], the nodes in the 

network have been assumed to be homogeneous 

in that all nodes had similar capabilities and were 

able to have continuous access to measurements. 

The authors in [22] have designed a distributed 

and adaptive resource management controller, 

which facilitates the optimal use of cognitive 

radio and soft-input/soft-output data fusion in 

vehicular access networks. In this case, multiple 

car smartphones equipped with heterogeneous 

cognitive capabilities and energy approximations 

play the role of secondary users and contend to 

request the serving Road Side Units (RSUs) by 

opportunistically accessing the time and 

frequency holes of the traffic flow generated by 

the primary user of the Internet backbone (Service 

Provider). This ultimately results in the joint 

maximization of the aggregate access throughput 

of the entire network, and the average per-client 

access rates. Also in [23], they used WSN design, 

as a multi-objective optimization problem through 

Genetic Algorithm (GA) technique and showed in 

all the network situations, random deployment has 

better performance compared to grid deployment. 

In addition, it is often observed in biological 

networks that the behaviour of the network tends 

to be dictated more heavily by a small fraction of 

the agents, as happens with bees and fish. This 

observation is the motivation to study what we 

shall refer to as heterogeneous adaptive networks 

[24, 25], where a fraction of the nodes, according 

to the estimation of observation noise of nodes, 

are assumed to be informed, while the remaining 

nodes are taken as uninformed. We study the 

performance of a heterogeneous network on 

distributed incremental LMS algorithm according 

to a defined threshold, and also simulate a 

network with noisy nodes. Then we will show that 

the proposed network works better in overcoming 

the degradation problem due to noisy nodes, and 

is robust to observation quality of the nodes. The 

simulation results show the effectiveness of our 

proposed algorithm.  

This article is organized as what follows. The 

problem of distributed parameter estimation and 

incremental solution are explained in Section 2. In 

Section 3, the proposed method for identifying 

informed and uninformed nodes with respect to 

defined SNR are discussed. Subsequently, Section 

4 shows the simulation results and the effect of 

number of these nodes and their distribution for 

accuracy of estimation. Finally, conclusions are 

provided in Section 5. 

Notation: Throughout the paper, we use boldface 

letters for random quantities. The * symbol is 

used for both complex conjugation of scalars and 

Hermitian transpose. 

 

2. Distributed estimation problem  

We considered a connected network consisting of 

N nodes. Each node k collects scalar 

measurements dk(i) and 1×M regression data 

vectors uk,i over successive time instants with a 



Farhid et al./ Journal of AI and Data Mining, Vol 5, No 2, 2017. 
 

287 

 

( ) ( ) * ( )
1 , , 1[ (i) ]i i i

k k k k i k k i k      du u

positive definite covariance matrix ,

, ,,

* ku k i k iR E u u . Two nodes are said to be 

neighbors if they can share information. The set of 

neighbors of node k including k itself is called the 

neighborhood of k, and is denoted by Nk. The 

measurements across all nodes are assumed to be 

related to a set of unknown M × 1 vectors {wo} 

via a linear regression model of the form [20]: 
0

( ) ( ), k 1,2,..., N
,

i w i
k k i k

  d u v  (1) 

 

 

where, vk(i) means measurement or model noise 

with variance
2

,v k
, and assumed to be spatially 

and temporally white, i.e. 
* 2

( ) ( ) . .
,

E i j ijk l v k kl
  v v  (2) 

 

in terms of the Kronecker delta function. The 

noise vk(i) is also assumed to be independent from 

ul,j for all l and j. All random processes are 

assumed to be zero mean, and wo denotes the 

parameter of interest for node k. For example, wo 

can be the parameter vector of some underlying 

physical phenomenon, the location of a food 

source or a vector modeling different groupings of 

nodes. The nodes in the network would like to 

estimate the vectors {wo} by seeking the solution 

for the following minimization problem: 

   
2

,1

NGlobe
J w E i w

k k ik
 


d u  

 

(3) 

In most previous works, a common value for all 

vectors was assumed so that all nodes across the 

network were following the same unknown 

parameter. The solution to (3) (i.e. wo) is given by: 
0 1

* * *

, , ,

1 1
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(4) 

 

In order to use (4), each node must have access to 

the global statistical information {Ru, Rdu} that in 

many applications are not available or change in 

time. However, in situations where a multitude of 

nodes has access to data, and assuming that some 

form of collaboration is allowed among the nodes, 

it is more useful to seek solutions that can take 

advantage of node cooperation. In addition, since 

the statistical profile of the data may vary with 

time and space, it is useful to explore cooperative 

strategies that are inherently adaptive. For 

example, the noise and signal-to-noise (SNR) 

conditions at the nodes may vary in time and 

space as well as the model parameters themselves. 

Under such conditions, it is helpful to endow the 

network of nodes with learning abilities so that it 

can function as an adaptive entity in its own right. 

By doing so, one would end up with an adaptive 

network, where all nodes respond to data in real-

time through local and cooperative processing, as 

well, adapt to variations in the statistical 

properties of the data [7]. 

 

2.1. Incremental solution  
To address this issue and moreover, to enable the 
network to respond to changes in statistical 
properties of data in real time, the incremental 
LMS adaptive network is proposed in [8]. The 
update equation for incremental LMS is given by: 

0 1

*
[ ( ) ]

1 , , 1

i
w

i

i i i
i

k k k k i k k i k

i
wi N



   






  
 











u d u  

 

 

(5) 

 

where,
i

k  denotes the local estimate of wo at node 

k at time i, and
k

  is the step size. In the 

incremental LMS algorithm, the calculated 

estimates (i.e.
i

k ) are sequentially circulated from 

node to node, as shown in figure 1. 

 

 

 

 

 

 

 

 

Figure 1. Structure of incremental LMS adaptive 

network. 

A good measure of the adaptive network 

performance is the steady-state mean-square 

deviation (MSD), which for each node k is 

defined as follows: 

2
( )

( )
1

E
k k

 



 
 

(6) 

where 

( ) ( )
1 1

i io
w

k k
 

 
 

 

(7) 
 

The mean-square performance of incremental 
LMS algorithm is studied in [20] using energy 
conservation arguments. The analysis relies on the 
linear model (1) and the following assumptions: 

{dk+1,uk+1} 

{dk,uk} 

{dk-1,uk-1} 

{dN,uN} ( )
1

i
k

( )
1

i
k
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(i) {uk,i} are spatially and temporally 
independent. 

(ii) The regressors {uk,i} arise from a 
circular Gaussian distribution with 
covariance matrix Ru,k. 

In [8], a complex closed-form expression for 

MSD has been derived. However, in the case of 

small step sizes, simplified expressions for the 

MSD can be described as follows:  

For each node k, introduce the eigen 

decomposition
*

 
,

R T
u k k kk

T  , where Tk is 

unitary, and k  is a diagonal matrix of the 

eigenvalues of Ru,k as follow: 

,1 ,2 ,{ , ,..., }k k k k Mdiag      
 

(8) 

 

Then according to the results from [7,8]: 
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(9) 

 

3. Proposed algorithm  
We examined the performance of heterogeneous 
network in distributed incremental LMS 
algorithm. Thus we considered two types of 
agents: informed and uninformed. Informed 
agents receive new data regularly and perform 
consultation and in-network processing tasks, 
while uninformed agents participate solely in the 
consultation tasks. The criterion for choosing 
informed and uninformed node is as follows: 

0
k

for SNR of nodek Threshold

for SNR of nodek Threshold





 


 

 

(10) 

If step size μk satisfies the condition that for every 

informed node, 0 . ( ) 2Ru   , where (.)  

denotes the spectral radius, where 
2

,

2

,

E
10log( ( ))

k i

v k

Threshold mean



u

 

 

(11) 

In fact, for each node, we compute SNR, the 

threshold without the mean operator, and compare 

it to each node of the network. If any node gets 

more than this threshold, we assign a step size   

for it, which otherwise is an uninformed node and 

the assigned step size is zero. Thus SNR at node k 

(or equivalently, the observation quality) is 

inversely proportional to the observation noise 

variance [26, 27]. The mean stability analysis 

aims to find out the sufficient conditions such that 

the local estimate at each node converges in the 

mean to the unknown parameter wo. 

 

3.1. Mean stability 

 Let the error vector for any node k be 
0i i

k kw    .  

We collected all weight error vectors and step-

sizes across the network into a block vector and M 

= diag {μkIM}. Then starting from (7) and using 

model (1), we can verify that the weight error 

vector evolves according to the relation below: 

*

1 ,[ ] ( )i i

k i k k i kI MR M v i     u  
 

(12) 
 

where 
*

, ,{ }i k i k iR diag u u  

 

(13) 

With assumption (i), whic implies 
,k iu  is 

independent from 
1

i

k 
  and taking expectation 

value of both sides of (12), we find that the mean 

relation of 
i

k  evolves in time according to the 

recursion: 
*

1 ,[ ] [ ] [ ( )]i i
k i k k i kE I MR E ME v i     u  
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(15) 

 

Thus if we have at least one informed node, the 

mean stability even in the presence of uninformed 

nodes is guaranteed. 

Also in a practical sensor network, a sensor may 

be damaged or attacked, making its measurement 

unreliable, and does not have any information 

about w0. If this happens, the sensor will only 

observe the pure noise and certainly degrade the 

estimation performance [28]. We refer to this 

phenomenon as node failure mode or low-quality 

nodes [28]. This is simulated by data model (16). 

0 ( ) usual node,

( ) failure node
( )

w ik i k

ik

i
k


 




u v

v
d  

 

(16) 

 

 

4. Simulation results 

In order to show the homogenous and 

heterogeneous adaptive network performance, we 

present a simulation example in figures 2-11. 

Figures 2-4 show the network topology with  N = 

10 nodes (four nodes are informed), seeking an 

unknown filter with M = 5 taps, along with the  

network statistical profile. The regressors are 

zero-mean Gaussian, independent from time and 

space, with covariance matrices Ru,k. The 

background noise power is denoted by
2

,v k
. 

Figure 5 shows the transient performance for the 

incremental LMS algorithm (6) using a uniform   

μ = 0.01. The results are averaged over 50 
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experiments. We also compared the network MSD 

of the proposed algorithm (heterogeneous) with 

that of the conventional (homogenous) 

incremental LMS algorithm in figure 5. At the 

initial state, the proposed algorithm showed slow 

convergence rate unlike the conventional 

algorithm that uses a constant step size for all 

nodes. As iteration continued, it converged a 

steady state with low steady-state error, which is 

better than the conventional algorithm. The SNR 

(dB) of each node (red) and threshold (blue) of 

network are shown in figure 6.  

As shown, the number of informed nodes with 

this configuration of the network is four. Also we 

simulated this method for a variety of step sizes. 

As shown in figure 7, this method works better for 

different step sizes.  

To see the effect of noisier nodes, we again 

considered a network with N = 10 nodes but with 

different statistical profile for nodes. One of the 

nodes belongs to (0, 3), and the other nodes 

belong to (0, 0.02). Simulations of this condition 

are shown in figures 8 and 9.  

As it is shown, the proposed method works 

considerably better than the usual incremental 

algorithm for both informed and uninformed 

noisier nodes. The reason for this improvement is 

that when any of the nodes gets noisier than 

others, the proposed algorithm assigns step size 

zero for it and the remaining nodes cooperate in 

the update stage. See the threshold curves in 

figures 8 and 9.  

Regarding the other condition, in a realistic sensor 

network, a sensor may be damaged or attacked, 

making its measurement unreliable. If this 

happens, the sensor will only observe the pure 

noise (modeled by its observation noise) and 

degrade the estimation performance. We refer to 

this event as node failure.  

As shown in figures 10 and 11, when the node 

failure happens, this method again works better 

than the homogeneous network if the failed node 

belongs to uninformed nodes. However, this is not 

the case for the informed nodes.  
 

 
Figure 2. Network topology for N = 10 nodes (red nodes 

are informed). 

 
Figure 3. Trace of regressor covariances Tr(Ru,k).  

 

Figure 4. noise variances 2

,v k . 

 
Figure 5. Transient network MSD for usual (red) and 

proposed (blue) incremental LMS. 

 
Figure 6. SNR of each node (red) and threshold (blue) of 

network. 

 
Figure 7. MSD differences for a variety of step sizes (4 

nodes are informed). 
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Figure 8. Transient network MSD for usual (red) and 

proposed (blue) incremental LMS for first uninformed 

noisier node (top) and new network design (bottom). 

 

 

 
 

Figure 9. Transient network MSD for usual (red) and 

proposed (blue) incremental LMS for first informed 

noisier node (top) and new network design (bottom). 

 
 

Figure 10. Transient network MSD for usual (red) and 

proposed (blue) incremental LMS for first uninformed 

node failure. 

 

 
Figure 11. Transient network MSD for usual (red) and 

proposed (blue) incremental LMS for first informed node 

failure. 

 

5. Conclusions 
In this paper, we considered various conditions of 
informed and uninformed nodes in distributed 
incremental adaptive estimation problem with 
ideal links. By defining a threshold and assigning 
node labels, we showed that the performance of 
the network with this configuration was better 
than the usual distributed incremental LMS 
(DILMS) algorithm. Then we examined this 
proposed method in a network containing some 
noisier nodes, and, as our simulation results 
showed, the proposed algorithm considerably 
improved the performance of the DILMS 
algorithm in the noisy condition. Also when the 
node failure happens, if the failed node belongs to 
uninformed nodes, this method again works better 
than homogeneous network, unlike informed 
nodes. On the other hand, since by increasing the 
number of informed nodes the performance of the 
network gets closer to homogeneous networks, if 
we locate the informed nodes in some safer places 
against failure, this kind of method would work 
better in all unreliable conditions.  Extension of 
this work to noisy links is the subject of the future 
communications. 
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ناشناخته              کمترین مربعات خطا برای تخمین پارامتر برپایه اثر شبکه ناهمگون تطبیقی افزایشی 

 در مشاهدات نامطمئن

 

 محمد حسین صداقی و موسی شمسی، *مرتضی فرهید

 دانشگاه صنعتی سهند، تبریز، ایران.دانشکده مهندسی برق، 

 42/04/4002 پذیرش؛ 09/00/4002 بازنگری؛ 42/09/4002 ارسال

 چکیده:

تهاییر بهه روند. این مقاله های پیچیده در جهان واقعی بکار میهای با قابلیت یادگیری و تطبیق هستند که برای مدل کردن رفتارهای تطبیقی، گرهشبکه

. در پهردازدمهیال ههای ایهدهکیفیت پارامتر تخمین ناشناخته با لینک برالگوریتم کمترین مربعات خطای توزیع شده های ناهمگون افزایشی برپایه شبکه

درون  آوری اطلاعات و ههم پهردازشها بر اساس نسبت سیگنال به نویز مطلع تعریف خواهند شد که هم در کار جمعهای ناهمگون، تعدادی از گرهشبکه

، الگوریتم پیشنهادی نهه دهندها نشان میسازیکه شبیهشوند. همچنانها وظیفه آپدیت نداشته و نامطلع خوانده میکه بقیه گرهای هستند درحالیشبکه

ز افهت تخمهین شهبکه یابد اها با گذشت زمان کاهش میگردد بلکه در محیطی که کیفیت مشاهدات گرهتنها باعث بهبود نتیجه تخمین نهایی شبکه می

   سازی صورت گرفته است.ها در ادامه بحث و شبیهکند. همچنین در مورد خرابی این گرهجلوگیری می

 .های مطلع، میانگین مربعات خطاشده، کمترین مربعات خطا، گرههای تطبیقی، تخمین توزیعشبکه :کلمات کلیدی

 


