

Journal of AI and Data Mining

Vol. 1, No.2, 2013, 63-73.

QoS-Based web service composition based on genetic algorithm

M. AllamehAmiri, V. Derhami, M. Ghasemzadeh
*

Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran.

Received 01 October 2012; accepted 09 February 2013

*Corresponding author: m.ghasemzadeh@yazd.ac.ir (M. Ghasemzadeh)

Abstract
Quality of service (QoS) is an important issue in the design and management of web service composition.

QoS in web services consists of various non-functional factors, such as execution cost, execution time,

availability, successful execution rate, and security. In recent years, the number of available web services has

proliferated, and then offered the same services increasingly. The same web services are distinguished based

on their quality parameters. Also, clients usually demand more value added services rather than those offered

by single, isolated web services. Therefore, selecting a composition plan of web services among numerous

plans satisfies client requirements and has become a challenging and time-consuming problem. This paper

has proposed a new composition plan optimizer with constraints based on genetic algorithm. The proposed

method can find the composition plan that satisfies user constraints efficiently. The performance of the

method is evaluated in a simulated environment.

Keywords: Web Service, Web Service Composition, Quality of Service, QoS, Genetic Algorithm.

1. Introduction
According to W3C definition “a web service is a

software system designed to support interoperable

machine-to-machine interaction over a network”.

It is an XML based, self-described software entity

which can be published, located, and used across

the internet using a set of standards, such as

Simple Object Access Protocol (SOAP), Web

Service Description Language (WSDL), and

Universal Description, Discover and Integration

(UDDI) [1]. Since web services can enable

computer-computer communication in a

heterogeneous environment, hence they are very

suitable for an environment such as the internet.

People can use the standardized web service

model for rapid design, implement and extended

applications. Many enterprises and corporations

provide different web services to be more

responsive and cost-effective. Google‟s SOAP

Search API for information inquiry [2] and

Amazon web services for doing enormous e-

commerce activities [3] are good examples of

such systems. A number of standards and

protocols have been designed to use and publish

web services over the internet. Some of the most

commonly used standards are UDDI, SOAP and

WSDL. Universal Description Discovery and

Integration (UDDI) is an XML-based registry that

provides a standard set of specifications for

service description and discovery. It defines the

information model, the service providers API for

registering and publishing services and the API

for service requesters to inquire for services. Web

service provider registers their web services into

UDDI registries. Simple Object Access Protocol

(SOAP) is an XML based protocol specification

for exchanging information between peers in the

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

64

decentralized, distributed environment. SOAP

provides a simple and lightweight mechanism to

communicate with web services. SOAP can form

the foundation layer of a web services protocol

stack. Web Service Description Language

(WSDL) is used to describe the interfaces of all

web services regardless of the underlying

technology. The WSDL is defined: Services as

collections of network endpoints, or ports. When

service provider wants to register a web service to

UDDI server (web service directory), it describes

web service by WSDL and puts it in UDDI

registry. As service requester looks for a web

service in UDDI server, s/he receives the WSDL

file of web services Figure 1 shows the IBM

standard architecture of web services. This

architecture provides a three level procedure to

find an appropriate web service. First, service

provider describes its web services in WSDL

Format and puts them in a web service directory

(registering web service). Then, service requester

searches into web service directory to find a

suitable web service. Finally, after selecting the

web service, service requester can interact with

the web service using SOAP protocol. There are

some sophisticated applications that cannot be

performed using a single, isolated web service.

Consequently we need to use a composition of

web services to perform complex tasks. An

Example of synthesizing web services is a travel

planning web service. When the client uses web

service based system to plan a trip, the following

steps will be taken into consideration in the

service process.

Figure 1. Standard architecture of web services.

At first, the client contacts a travel agency web

service to reserve a hotel room and an airplane

seat. Then the client selects the best reservation

plan among the plans suggested to him/her by

considering factors like schedule, financial

condition, weather conditions and some other

factors. In addition, the client may request

services, such as a car rental agency or insurance.

After all web services are selected, the client pays

the reservation fee to the travel agency. Figure 2

provides an example of travel agency candidate

web services and Figure 3 represents all

composition plans of the candidate web services.

Client

Travel Agency WS

Flight WS Weather WS Insurance WS Car Rental WS Payment WS

ws1 Ws2 Ws3 Ws1 Ws2 Ws3 Ws1 Ws2 Ws3 Ws1 Ws2 Ws3 Ws1 Ws2 Ws3

Figure 2. An example of travel Agency web service and candidate web services for each task.

End

WS11

Flight Weather Insurance Car Rental Payment

Start

…
......

WS12

WS1n

WS21

WS22

WS2n

WS31

WS32

WS3n

WS41

WS42

WS4n

WS51

WS52

WS5n

…
......

…
......

…
......

…
......

Figure 3. All composition plans for travel agency example.

WS

Directory

WS

Directory

WS

Directory

 D
is

co
ve

r Register

 Interact

 U
D

D
I,W

SD
L

 SOAP

 U
DDI,W

SDL

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

65

Web service composition creates new

functionalities by aggregating different services

based on a specific workflow [4]. When there are

more than one candidate web services for a task or

process, there will be various combinations of

web services having the same functionality with

different qualities. For instance, if there are m

tasks and n candidate web services, the number of

all possible plans is n
m
. In general, finding a

composition plan that fulfils a client‟s QoS

requirement is a time-consuming optimization

problem. Combining web services of high QoS

values in a reasonable computation time has been

recognized as an important problem of web

service composition [6]. We need to find a

composition plan satisfying client‟s constraints

without checking all combinations. This will be

impractical even if there are a few services and

tasks in the workflow. Typical QoS factors

associated with a web service are executive cost

and time, availability, successful execution rate,

reputation, and usage frequency [5]. Also, there

are other properties other than the above-

mentioned factors, such as reliability, security and

so on. To obtain a composition plan, we should

first create a QoS model to describe the QoS

aspects of web services. To create an appropriate

model, service requester and service provider

should agree on same definitions to the extent

possible. After creating a QoS model, the second

step is QoS based on web service discovery and

selection. Unfortunately, WSDL only addresses

functional aspects of a web service and does not

contain any useful description for non-functional

requirements [14]. Using the QoS model, service

requester can filter inappropriate web services. A

number of studies on web service selection have

been carried out [7, 8]. One of the most well

known techniques is „„matchmaking” that is

employed in situations where services with

semantic descriptions for their functional

attributes are available on the Internet search

system [7]. It should be noted that the process of

filtering web services consists of functional

matchmaking and non-functional matchmaking.

In functional matchmaking, web services that

have different functionalities from the client are

filtered out and on the other hand, in non-

functional matchmaking, web services that don‟t

have the appropriate quality are eliminated. At

this stage, the candidate web services for each

task are selected. In [8], a new QoS-based service

registration and discovery model to explore the

feasibility of QoS involving into UDDI registry

information is suggested. In this model, service

providers have to send QoS claims to service QoS

certifiers, responding to the third party or forum

web services, for certification. The service

customer is responsible for verifying QoS claims.

Finally, if QoS claims pass QoS certifier

verification, the QoS information will be

registered in the UDDI registry associated with

function description. In the last stage, we should

obtain the optimized web service composition

plan from all available plans. As mentioned

above, trying all combinations of web services is

time consuming. A problem of web service

composition is usually an NP-hard [9]. Several

solutions have been suggested so far to solve this

problem that one of them such as [10] is based on

Leaner programming and some are based on AI

(e.g. [6]). Genetic algorithm is effective approach

to solve some kind of hard problem [22, 23, 24,

25, 26]. Our approach uses the genetic algorithm

[20, 21] to solve this problem. To escape from

local optimums, we present some modifications in

crossover, mutation and selection approach. The

remaining sections of this paper are organized in

order. Next section presents related work. The

third section describes the QoS model of web

service composition. The fourth section proposes

our GA based on composition algorithm. The

computational results of the algorithm are given in

the fifth section and the sixth section includes

conclusion and future work.

2. Related work

Web service discovery and QoS based on the web

service composition offer interesting applications

of constraint satisfaction methods. In [10] a

multiple criteria decision making with weighted

sum model (to select a service) and integer

programming (IP) approaches with branch and

bound (to select an optimal solution) have been

proposed. In [6] constraint satisfaction based on

solution which combine simulated annealing [17,

18, 19] approach with Tabu search [16] has been

proposed. The Tabu search is used for generating

neighbour plans and simulated annealing heuristic

is applied for accepting or rejecting the neighbour

plan. In [11] a QoS-based web service

composition algorithm that combines local

strategy and global strategy has the following

features. Initially, the services that have low QoS

value are eliminated by local strategy and then the

problem has reduced to a multi-dimension multi-

choice 0-1 knapsack problem solved by the

heuristic method. In [12] a model that expands

traditional UDDI to describe the QoS attributes of

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

66

web services is presented. Also, a service proxy is

added to this model by which all service

compositions requested by service requester are

found, bound and invoked. In [13] an automated

web service composition is performed by

hierarchical task network and SHOP2 HTN

system is developed. This system takes OWL-S

service model as input (client requirement) and

executes the plan as a system result. High

probability of Getting stuck in local optimum is

the main problem of these methods. This is

because it is unable to work more than one

composition plan at the same time. At the same

time, the probability in methods such as genetic

algorithms and fish swarm algorithms working on

several composition plans are less than above-

mentioned method.

3. QoS based web service model

3.1. QoS properties description

The most important QoS properties used in this

paper are response time, execution cost,

availability, reputation and successful execution

rate. The response time can be defined in several

ways. For example, it can be defined as the time

between sending request and receiving respond.

This period involves receiving request massage

time, queuing time, execution time and receiving

response time by requester. Measuring these time

sections is very difficult because they depend on

network conditions. Alternatively, it can be

measured as the time between receiving request

by service provider and sending response to

service requester. This time includes queuing time

and execution time only affected by the web

service workload. This value must be

continuously updated for each web service

because the work load of web service may change

during the work time. Execution cost is a fee

received by service provider from service

requester for each execution. This fee is

determined by service provider and may change

according to web service provider‟s financial

policy. Availability is the degree that a web

service is accessible and ready for immediate use.

This value can be defined as [uptime/ (uptime +

downtime)]. Downtime includes the time that web

service is inaccessible and time taken to repair it.

This value should be updated by service provider.

Reputation is the average reputation score of a

web service evaluated by the clients. The

individual reputation scores are likely to be

subjective, but the average score becomes

trustable as the total number of the usages

increases [6]. The successful Execution Rate is the

percentage of requests that a web service perform

successfully when web service is available. It is

computed by dividing the number of successful

performed requests by the total number of

requests. The QoS properties used in this paper is

summarized in Table 1.

Table 1. Description of QoS peoperties used in this paper

QoS

property
Description

Response

Time

Time between receiving request

and sending response

Execution

cost
Execution cost per request

Availability
DownTimeUpTime

UpTime



Reputation
UsageOfNumberTotal

Rep i

Successful

Execution

Rate RequestofNumberTotal

RequestSuccessfulofNumer

Notations

Descriptions of notations used in this paper are as

follow:

m: number of tasks.

n: number of candidate web services for each task.

pi: i-th atomic process of a composition schema (1

≤ i ≤ m).

wsij: j-th candidate web service for the ith atomic

process, (1 ≤ i ≤ m , 1 ≤ j ≤ n).

d: index of QoS property .

wd: weight of the d-th QoS constraint defined by a

client.

Cond: permissible value of the d-th QoS property

(constraints).

Aggd: aggregated value of the d-th QoS property

of a composition plan.

bij: binary decision variable (0 or 1). If bij=1 then

j-th candidate web service is selected for i-th

process.

3.2. QoS-based evaluation of web services

Since each QoS property may be measured in

various metrics, they should be normalized for

appropriate evaluation. The QoS properties are

divided into two categories: First, negative values,

such as response time and execution cost, and

second, positive values, such as availability and

reputation. The higher value in negative properties

indicates the lower quality and the higher one in

positive properties represent higher quality and

vice versa. The following equations are used to

normalize positive and negative properties,

respectively:

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

67






















01

0

minmax

minmax
minmax

min

qq

qq
qq

qq

qnrm (1)


















01

0

minmax

minmax
minmax

max

qq

qq
qq

qq

qnrm (2)

After normalization, the local value of each web

service that is candidate for a task will be

computed from the following formula. Where Q is

the number of QoS properties.






q

i

iiij qwwsofValueLocal

0

 (3)

3.3. Aggregation value of QoS property

Generally, composition plans are constituted from

serial, cycle, XOR-parallel, and AND-parallel

execution patterns. According to the definition of

QoS properties in section 3.1, the aggregative

value of web service composition is calculated

regarding to its workflow pattern. The description

and aggregation values of workflow patterns are

discussed below.

Serial pattern is an execution pattern in which

services are executed one after another and there

is no overlap between execution periods of web

services. Figure 4 illustrates this pattern and Table

2 represents the aggregation value of this pattern.

According to Table 3 to calculate aggregation

value of response time and execution cost, each

web service value should be added to each other.

Besides, in order to calculate aggregation value of

availability and successful execution rate, web

services values should be multiplied by each other

because web services are independent from each

other. The aggregative value of reputation is

obtained by taking average of reputation values of

web services.

Figure 4. Serial Pattern.

Cycle pattern is a kind of sequential pattern in

which the web service executes for limited cycles.

According to Table 3, the aggregation values of

this pattern are similar to sequential pattern.

Figure 5 describes this pattern.

Table 2. Aggregative QoS value for serial pattern

Response Time 


m

i

RTWS

0

.

Execution Cost 


m

i

ECWS

0

.

Availability 


m

i

AvaWS

0

.

Successful Execution

rate 


m

i

SucWS

0

.

Reputation

m

pWS

m

i


0

Re.

Figure 5. A cycle pattern.

Table 3. Aggrigative QoS value for a cycle pattern

Response Time).(* RTWSm

Execution Cost).(* RTWSm

Availability AvaWS.

Successful Execution

rate
SucWS.

Reputation pWS Re.

XOR-parallel pattern is an execution pattern in

which after the completion of the prior web

service, one of the following web services just

executes. In this pattern execution of each

component is non-deterministic; therefore, to

calculate the aggregation QoS effect of this

pattern, the worst case should be calculated. We

can obtain aggregative QoS values of this pattern

as described in Table 4. Figure 6 depicts this

pattern.

AND-parallel pattern is an execution pattern in

which after the completion of the prior web

service, the entire subsequent web services are

executed simultaneously. The aggregative QoS

values of this pattern are described in Table 5.

Notice that to obtain aggregative response time,

we use the Max function, because all subsequent

…

….
WS1 WS2 WSm

WS

K times

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

68

components are executed simultaneously. Figure 7

describes this pattern.

Figure 6. XOR-parallel pattern.

Table 4. Aggregative QoS value for XOR-parallel pattern

Response Time).(RTWSMax

Execution Cost).(ECWSMax

Availability).(AvaWSMin

Successful Execution

rate
).(SucWSMin

Reputation)Re.(pWSMin

Figure. 7. AND-parallel pattern.

Table 5. Aggrigative QoS value for XOR-parallel pattern

Response Time).(RTWSMax

Execution Cost




m

i

ECWS

0

.

Availability




m

i

AvaWS

0

.

Successful Execution

rate 


m

i

SucWS

0

.

Reputation

m

pWS

m

i


0

Re.

4. The GA based algorithm

In this section, we present our approach to find an

optimal web service composition plan Since the

number of all composition plans of this problem is

very large (n
m
), some ideas to improve GA are

presented so that it quickly converges the

appropriate composition plan. We introduce some

idea for initialization, crossover and mutation of

chromosomes. Also the method to escape from

local optimum is represented. If the algorithm

cannot find the optimal plan in a specific time,

without losing best plans of previous step, the

algorithm will escape from local optimum.

Constraints

There are two constraints. The first constraint is

that only one web service among candidate web

services should be chosen for a task. In other

words, the equation (4) has to be satisfied. The

second constraint is that the service composition

must satisfy user constraints. For negative QoS

properties, such as execution cost and time the

aggregation values must be smaller than user

constraints. For positive QoS properties,

aggregation values must be greater than user

constraints. Equation (5) describes this constraint.






n

i

ij mib

0

11
(4)









sconstraintposotiveFor

sconstraintnegetiveFor

dd

dd

ConAgg

ConAgg
 (5)

Algorithm construction

To obtain relation between local optimum and

global optimum chromosomes, several

experiments have been carried out. We design a

small example of composition plan with m=10

and n=6 in which the number of plans is 10
6
.

Initially, all web services should be sorted

according to their local values. Then, the best

composition plan is found by using enumeration

methods. In this method, all composition plans are

obtained and evaluated. Table 6 shows the

percentage of web services that are selected for

global optimum plan. The closer this amount is to

9, the higher its local value will be. About 36.6%

of web services in the composition plans have

best local values too. It can be inferred that about

70% of web services that are selected for the best

composition plan belong to 30% of the best web

services that have high local values. Figureure. 8

depicts the values of fitness function of all plans.

WS1

WS11

……
.

WS1m

XOR

WS1

WS11

……
.

WS1m

AND

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

69

In this diagram, each two adjacent points that

demonstrate two adjacent plans, differ only in one

web service. As depicted in this figure, for this

small example, several local optimums exist so

the algorithm should be changed so that it can

escape from them; to escape from these local

optimums, the various forms of randomness is

required.

Figure. 8. Value of all plans in example with 6 tasks and 10 web services.

Table 6. Relation between Local and global optimum

WS number Percentage of repeat in best plan

1 2.2%

2 1.6%

3 4.4%

4 5.5%

5 6.2%

6 9.0%

7 12.2%

8 22.3%

9 36.6%

Construction of chromosome is described in

Figure 9. Each chromosome consists of m genes

and each gene has a value between 1 to n.

Figure 9. Chromosome structure.

The main body of the algorithm is summarized in

Table 7 and specifications of its functions are

described in Tables 8, 9, 10, 11 and 12. At first,

we should calculate local value of each web

service. This is done prior to execution of

composition plan optimization. Local value is a

criterion of goodness among the candidate web

services of a specific task. To obtain the local

value, the QoS properties are normalized

according to equations (1) and (2), and then the

local value is calculated using equation (3). To

obtain an optimized composition plan at first, web

services candidate for a task are sorted according

to their local values. In the next step,

chromosomes are generated. 20% of all

chromosomes are selected from 20% of best web

services that have high local value and the

remaining 80% is selected randomly. For each

chromosome fitness function is calculated by

using equation (9). It is derived from objective

functions of [6, 10, 15]. D1 is used for negative

values and D2 is used for positive values. If the

fitness function value is equal or smaller than 0, it

will mean that the appropriate composition plan

satisfying user constraints is found.

values)posotive(For

)1.(

values)negetive(For

)1.(

2

1









dd
d

d
d

dd
d

d
d

ConAggif
Con

Agg
wD

ConAggif
Con

Agg
wD

21 DDFunctionFitness  (9)

Crossover is a function to combine two or more

parent chromosomes and obtain one or more child

chromosomes. We define two kinds of crossover.

In crossover type 1 shown in Figure 10, genes of a

child are inherited from parents alternatively. In

crossover type 2 shown in Figure 11, a certain

percentage of genes are inherited from one parent

and the other genes are inherited from the other

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

70

parent. For crossover operation, 20% of best

chromosomes having high fitness are combined

with each other by crossover type 1 and for the

remaining 80%, each chromosome is combined

with a randomly selected chromosome belonging

to 20% of chromosomes with high fitness function

by crossover type 2.

To select chromosomes for the next step

(selection function), constant number of best

chromosomes from the previous step are selected

and replaced with worst chromosomes in current

step. This results in preservation of best

chromosomes but accelerates the convergence of

the algorithm to the local optimum. To escape

from local optimum we design mutation and

partial initialization chromosomes functions. In

mutation, some genes of some chromosomes that

are selected randomly will change with

probability of Pm.

To fix the selection function accelerating the

convergence of the algorithm to the local

optimum, the Partial initialization chromosomes

function is presented. In this function, a constant

number of best chromosomes are kept and other

chromosomes are generated randomly again.

5. Experiments

We have accomplished several experiments to

evaluate our algorithm. The programming

language used to do the evaluation is Java and the

algorithm is executed on desktop PC with

Pentium 2.2 GHz dual core CPU and 3 GB of

RAM. We compare the execution time of our

algorithm with enumeration method. The first

experiment was performed with 30, 50 and 100

tasks. For each task we have 30, 40 and 50 web

services. As shown in Figureure. 12, the

maximum execution time of the algorithm is 377

milliseconds. In a separate run, another

experiment is performed with 100 web services in

which the number of tasks is 20, 40 and 50. In this

experiment the maximum time is equal to 240

milliseconds. The results are shown in Figureure.

13. Figure 14 shows the result of enumeration

method. In enumeration method, the plans are

generated until the suitable plan is founded. From

this diagram, it can be inferred that the time of

execution increases exponentially when number

of tasks increase linearly. Furthermore, we

compare our work with the work represented in

[6]. They provide a solution for composition plan

optimization using a combination of Tabu search

and simulated annealing approach. The result of

this comparison is shown in Figure 15.
Table 7. Main body of algorithm

Function Composition_Plan_Optimizer

 Sort all web services according to their local

value;

 Initialize chromosomes ();

 Sort all chromosomes according to their local

score;

 Counter=0;

 While not find appropriate plan do

 Crossover ();

 Sorts all web services according to their

local score;

 Selection ();

 Sorts all web services according to their

local score;

 Mutation ();

 Sorts all web services according to their

local score;

 Counter=counter+1;

 If (counter % T=0) Do

 Partial_initialization_Chromosome();

 End if

 End While

End Function

Table 8. Initialization chromosomes function

Function Initialization Chromosome

For 20% of population do

Select chromosome genes are selected

randomly from 20% of best web

services

End For

For 80% of population do

Select chromosome genes are selected

randomly.

End For

End Function

 Table 9. Crossover function

Function Crossover

20% of best chromosomes are combined with

each other by crossover type 1.

80% of remaining chromosomes are

combined with 20% of best chromosomes

with crossover type 2.

End Function

Figure 11. Crossover type 2.

Parents Child

Figure 10. Crossover type 1.

Parents Children

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

71

Table 10. Selection function

Function Selection

Replace N number of best chromosomes

from previous step with N worst

chromosomes of current step

End Function

Table 11. Mutation function

Function Mutation

With probability of Pm, some genes of some

chromosomes are changed randomly

End Function

Table 12. partial_initialization_chromosomes function

Function Partial_initialization_chromosomes

Keep N number of the best chromosomes

and other chromosomes are initialized

again.

End Function

Figure 12. Performance of GA based algorithm

Figure 13. Performance of GA based algorithm with 100

tasks.

Figureure. 14. Performance of enumeration method

Figureure. 15. Compare with Tabu search approach

Furthermore, one of the important factors having

the significant impact on the execution time is the

population size. Figureure. 16 shows the impact of

the population size on the execution time. In this

experiment, the number of web services is 100

and the numbers of tasks are 20, 40 and 50

respectively. As it can be inferred from the

diagram, the best population size is in range of

300 to 500.

Figure 16. Impact of population number on the

performance of algorithm (web service=100).

6. Conclusion

In this paper, we showed how can find the suitable

web service composition using genetic

algorithms. Some new ideas for generating

chromosomes, selection and crossover functions

were proposed. The experimental results

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

72

demonstrated the advantages of the proposed

ideas are to overcome local optimums.

Experimental results show that since GA is a K

beam search, it can find suitable composition plan

much faster than other random search approaches.

Therefore, it can be concluded that applying

genetic algorithms in such problems has a great

effect on improving computation time. As a future

work, we suggest examining effects of using

different formulas for fitness function.

Acknowledgements

This work was partially supported by Iranian

Telecommunication Research Center (ITRC).

References
[1] CURBERA, F., M. DUFTLER, R. KHALAF, W.

NAGY, N. MUKHI, S. WEERAWARANA, Unraveling

the Web Services web, An Introduction to SOAP, WSDL

and UDDI, IEEE Internet Computing, Vol. 6, (2002), pp.

86–93.

[2] KOSHMAN, S., Visualization-based Information

Retrieval on the Web, Library and Information Science

Research Vol. 28, (2006), pp. 192–207.

[3] CHEN, L.S., F.H. HSU, M.C. CHEN, Y.C. HSU,

Developing Recommender Systems With the

Consideration of Product Profitability for Sellers,

Information Sciences, Vol 178, (2008), pp. 1032–1048.

[4] CHEN, Y., L. ZHOU, D. ZHANG, Ontology-

Supported Web Service Composition: An Approach to

Service-Oriented Knowledge Management in Corporate

Services, Database Management Vol 17, (2006), pp. 67–84.

[5] O‟SULLIVAN, J., D. EDMOND, A.T. HOFSTEDE,

What‟s in a service? Distributed and Parallel Databases Vol

12, (2002), pp. 117–133.

[6] KO, J.M, C.O. KIM, I. KWON, Quality-of-Service

Oriented Web Service Composition Algorithm and

Planning Architecture, Systems and Software, Vol. 81,

(2008), pp. 2079–2090.

[7] WANG, P., K.M. CHAO, C.C. LO, On Optimal

Decision for Qos-Aware Composite Service Selection,

Expert Systems with Applications, Vol 37, (2010), pp.

440–449

[8] RAN, S., A Model for Web Services Discovery with

QoS, ACM SIGecom Exchanges, Vol 4, 2003, pp. 1 – 10.

[9] CANFORA, G., M.D. PENTA, R. ESPOSITO, M.L.

VILLANI. An Approach for Qos-Aware Service

Composition Based on Genetic Algorithms. Proc. Int. Conf.

on Genetic and evolutionary computation, Washington DC,

USA, (2005), pp. 1069–1075.

[10] HUANG, A.F.M., C.W. LAN, S.J.H. YANG, An

Optimal Qos-Based Web Service Selection Scheme,

Systems and Software, Vol 81, (2008), pp. 2079–2090.

[11] AI, W.H, Y.X. HUANG, H. ZHANG, N. ZHOU,

Web Services Composition and Optimizing Algorithm

Based on QoS, Proc. Int. Conf. on Wireless

Communications, Networking and Mobile Computing,

Dalian, (2008), pp. 1-4.

[12] LIU, Z., J. LI, J, LI, A. AN, J. XU, A Model for Web

Services Composition Based on Qos and Providers'

Benefit, Proc. Int. Conf. on Wireless communications,

networking and mobile computing, Beijing, China, (2009),

pp. 4562-4565.

[13] SIRIN, E., B. PARSIA, D. WU, J. HENDLER, D.

NAU, HTN Planning for Web Service Composition Using

SHOP2, Web Semantics Vol 1, (2004), pp. 377–396.

[14] D'AMBROGIO, A, A Model-driven WSDL

Extension for Describing the QoS of Web Services, Proc.

IEEE Int. Conf. on Web Services, (2006), pp. 789 – 796.

[15] LIANG, W.Y., C.C. HUANG, H.F. CHUANG, The

Design With Object (DWO) Approach to Web Services

Composition, Computer Standards & Interfaces, Vol 29,

(2007), pp. 54-68.

[16] FERCHICHI, S.E., K. LAABIDI, S. ZIDI Genetic

Algorithm and Tabu Search for Feature Selection, Studies

in Informatics and Control, Vol. 18, No. 2, (2009).

[17] AARTS, E.H.L., P.J.M. VAN LAARHOVEN,

Simulated Annealing: Theory and Applications, D. Reidel

Publishing Company, (1987).

[18] CHAISEMARTIN, P., G. DREYFUS, M. FONTET,

E. KOUKA, P. LOUBIÈRES, SIARRY P., Placement and

Channel Routing by Simulated Annealing: Some Recent

Developments, Computer Systems Science and

engineering, Vol. 41, (1989).

[19] METROPOLIS, N., A.W. ROSENBLUTH, M.N.

ROSENBLUTH, A.H. TELLER, E. TELLER, Simulated

Annealing, J. Chem. Phys. 21, (1953).

[20] PATNAIK, S., Genetic Algorithms: A Survey, IEEE

computer society, Vol. 27, No. 6, pp.17-26, (1994).

[21] ZOMAYA, P.F., Parallel Genetic Algorithms, Parallel

& Distributed Computing, Handbook, McGraw Hul,

(1996).

[22] RAJKUMAR, R. , P. SHAHABUDEEN, P.

NAGARAJ, S. ARUNACHALAM, T. PAGE, A Bi-

Criteria Approach to the M-machine Flowshop Scheduling

Problem, Studies in Informatics and Control, Vol. 18, No.

2, (2009).

[23] DRIDI, H., R. KAMMARTI, M. KSOURI, PIERRE

BORNE, A Genetic Algorithm for the Multi-Pickup and

Delivery Problem with Time Windows, Studies in

Informatics and Control, Vol. 18, No. 2, (2009).

[24] KAMMARTI, R., I. AYACHI , M. KSOURI, P.

BORNE, Evolutionary Approach for the Containers Bin-

Packing Problem, Studies in Informatics and Control, Vol.

18, No. 4, (2009).

Ghasemzadeh et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013

73

[25] BOUKEF, H., M. BENREJEB, P. BORNE, A

Proposed Genetic Algorithm Coding for Flow-

ShopScheduling Problems, International Journal of

Computers, Communications & Control, Vol. 2 , No. 3,

(2007), pp. 229-240.

[26] CUBILLOS, C., E. URRA, N. RODRÍGUEZ,

Application of Genetic Algorithms for the DARPTW

Problem, International Journal of Computers,

Communications & Control, Vol. 4, No. 2, (2009), pp. 127-

136.

