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Abstract 
Quality of service (QoS) is an important issue in the design and management of web service composition. 

QoS in web services consists of various non-functional factors, such as execution cost, execution time, 

availability, successful execution rate, and security. In recent years, the number of available web services has 

proliferated, and then offered the same services increasingly. The same web services are distinguished based 

on their quality parameters. Also, clients usually demand more value added services rather than those offered 

by single, isolated web services. Therefore, selecting a composition plan of web services among numerous 

plans satisfies client requirements and has become a challenging and time-consuming problem. This paper 

has proposed a new composition plan optimizer with constraints based on genetic algorithm. The proposed 

method can find the composition plan that satisfies user constraints efficiently. The performance of the 

method is evaluated in a simulated environment. 

Keywords: Web Service, Web Service Composition, Quality of Service, QoS, Genetic Algorithm. 

1. Introduction 
According to W3C definition “a web service is a 

software system designed to support interoperable 

machine-to-machine interaction over a network”. 

It is an XML based, self-described software entity 

which can be published, located, and used across 

the internet using a set of standards, such as 

Simple Object Access Protocol (SOAP), Web 

Service Description Language (WSDL), and 

Universal Description, Discover and Integration 

(UDDI) [1]. Since web services can enable 

computer-computer communication in a 

heterogeneous environment, hence they are very 

suitable for an environment such as the internet. 

People can use the standardized web service 

model for rapid design, implement and extended 

applications. Many enterprises and corporations 

provide different web services to be more 

responsive and cost-effective. Google‟s SOAP 

Search API for information inquiry [2] and 

Amazon web services for doing enormous e-

commerce activities [3] are good examples of 

such systems. A number of standards and 

protocols have been designed to use and publish 

web services over the internet. Some of the most 

commonly used standards are UDDI, SOAP and 

WSDL. Universal Description Discovery and 

Integration (UDDI) is an XML-based registry that 

provides a standard set of specifications for 

service description and discovery. It defines the 

information model, the service providers API for 

registering and publishing services and the API 

for service requesters to inquire for services. Web 

service provider registers their web services into 

UDDI registries. Simple Object Access Protocol 

(SOAP) is an XML based protocol specification 

for exchanging information between peers in the 
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decentralized, distributed environment. SOAP 

provides a simple and lightweight mechanism to 

communicate with web services. SOAP can form 

the foundation layer of a web services protocol 

stack. Web Service Description Language 

(WSDL) is used to describe the interfaces of all 

web services regardless of the underlying 

technology. The WSDL is defined: Services as 

collections of network endpoints, or ports. When 

service provider wants to register a web service to 

UDDI server (web service directory), it describes 

web service by WSDL and puts it in UDDI 

registry. As service requester looks for a web 

service in UDDI server, s/he receives the WSDL 

file of web services Figure 1 shows the IBM 

standard architecture of web services. This 

architecture provides a three level procedure to 

find an appropriate web service. First, service 

provider describes its web services in WSDL 

Format and puts them in a web service directory 

(registering web service). Then, service requester 

searches into web service directory to find a 

suitable web service. Finally, after selecting the 

web service, service requester can interact with 

the web service using SOAP protocol. There are 

some sophisticated applications that cannot be 

performed using a single, isolated web service. 

Consequently we need to use a composition of 

web services to perform complex tasks. An 

Example of synthesizing web services is a travel 

planning web service. When the client uses web 

service based system to plan a trip, the following 

steps will be taken into consideration in the 

service process. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Standard architecture of web services. 

At first, the client contacts a travel agency web 

service to reserve a hotel room and an airplane 

seat. Then the client selects the best reservation 

plan among the plans suggested to him/her by 

considering factors like schedule, financial 

condition, weather conditions and some other 

factors. In addition, the client may request 

services, such as a car rental agency or insurance. 

After all web services are selected, the client pays 

the reservation fee to the travel agency. Figure 2 

provides an example of travel agency candidate 

web services and Figure 3 represents all 

composition plans of the candidate web services. 
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Figure 2. An example of travel Agency web service and candidate web services for each task. 
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Figure 3. All composition plans for travel agency example.
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Web service composition creates new 

functionalities by aggregating different services 

based on a specific workflow [4]. When there are 

more than one candidate web services for a task or 

process, there will be various combinations of 

web services having the same functionality with 

different qualities. For instance, if there are m 

tasks and n candidate web services, the number of 

all possible plans is n
m
. In general, finding a 

composition plan that fulfils a client‟s QoS 

requirement is a time-consuming optimization 

problem. Combining web services of high QoS 

values in a reasonable computation time has been 

recognized as an important problem of web 

service composition [6]. We need to find a 

composition plan satisfying client‟s constraints 

without checking all combinations. This will be 

impractical even if there are a few services and 

tasks in the workflow. Typical QoS factors 

associated with a web service are executive cost 

and time, availability, successful execution rate, 

reputation, and usage frequency [5]. Also, there 

are other properties other than the above-

mentioned factors, such as reliability, security and 

so on. To obtain a composition plan, we should 

first create a QoS model to describe the QoS 

aspects of web services. To create an appropriate 

model, service requester and service provider 

should agree on same definitions to the extent 

possible. After creating a QoS model, the second 

step is QoS based on web service discovery and 

selection. Unfortunately, WSDL only addresses 

functional aspects of a web service and does not 

contain any useful description for non-functional 

requirements [14]. Using the QoS model, service 

requester can filter inappropriate web services. A 

number of studies on web service selection have 

been carried out [7, 8]. One of the most well 

known techniques is „„matchmaking” that is 

employed in situations where services with 

semantic descriptions for their functional 

attributes are available on the Internet search 

system [7]. It should be noted that the process of 

filtering web services consists of functional 

matchmaking and non-functional matchmaking. 

In functional matchmaking, web services that 

have different functionalities from the client are 

filtered out and on the other hand, in non-

functional matchmaking, web services that don‟t 

have the appropriate quality are eliminated. At 

this stage, the candidate web services for each 

task are selected. In [8], a new QoS-based service 

registration and discovery model to explore the 

feasibility of QoS involving into UDDI registry 

information is suggested. In this model, service 

providers have to send QoS claims to service QoS 

certifiers, responding to the third party or forum 

web services, for certification. The service 

customer is responsible for verifying QoS claims. 

Finally, if QoS claims pass QoS certifier 

verification, the QoS information will be 

registered in the UDDI registry associated with 

function description. In the last stage, we should 

obtain the optimized web service composition 

plan from all available plans. As mentioned 

above, trying all combinations of web services is 

time consuming. A problem of web service 

composition is usually an NP-hard [9]. Several 

solutions have been suggested so far to solve this 

problem that one of them such as [10] is based on 

Leaner programming and some are based on AI 

(e.g. [6]). Genetic algorithm is effective approach 

to solve some kind of hard problem [22, 23, 24, 

25, 26]. Our approach uses the genetic algorithm 

[20, 21] to solve this problem. To escape from 

local optimums, we present some modifications in 

crossover, mutation and selection approach. The 

remaining sections of this paper are organized in 

order. Next section presents related work. The 

third section describes the QoS model of web 

service composition. The fourth section proposes 

our GA based on composition algorithm. The 

computational results of the algorithm are given in 

the fifth section and the sixth section includes 

conclusion and future work. 

2. Related work 

Web service discovery and QoS based on the web 

service composition offer interesting applications 

of constraint satisfaction methods. In [10] a 

multiple criteria decision making with weighted 

sum model (to select a service) and integer 

programming (IP) approaches with branch and 

bound (to select an optimal solution) have been 

proposed. In [6] constraint satisfaction based on 

solution which combine simulated annealing [17, 

18, 19] approach with Tabu search [16] has been 

proposed. The Tabu search is used for generating 

neighbour plans and simulated annealing heuristic 

is applied for accepting or rejecting the neighbour 

plan. In [11] a QoS-based web service 

composition algorithm that combines local 

strategy and global strategy has the following 

features. Initially, the services that have low QoS 

value are eliminated by local strategy and then the 

problem has reduced to a multi-dimension multi-

choice 0-1 knapsack problem solved by the 

heuristic method. In [12] a model that expands 

traditional UDDI to describe the QoS attributes of 
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web services is presented. Also, a service proxy is 

added to this model by which all service 

compositions requested by service requester are 

found, bound and invoked.  In [13] an automated 

web service composition is performed by 

hierarchical task network and SHOP2 HTN 

system is developed. This system takes OWL-S 

service model as input (client requirement) and 

executes the plan as a system result. High 

probability of Getting stuck in local optimum is 

the main problem of these methods. This is 

because it is unable to work more than one 

composition plan at the same time. At the same 

time, the probability in methods such as genetic 

algorithms and fish swarm algorithms working on 

several composition plans are less than above-

mentioned method. 

3. QoS based web service model 

3.1. QoS properties description 

The most important QoS properties used in this 

paper are response time, execution cost, 

availability, reputation and successful execution 

rate. The response time can be defined in several 

ways. For example, it can be defined as the time 

between sending request and receiving respond. 

This period involves receiving request massage 

time, queuing time, execution time and receiving 

response time by requester. Measuring these time 

sections is very difficult because they depend on 

network conditions. Alternatively, it can be 

measured as the time between receiving request 

by service provider and sending response to 

service requester. This time includes queuing time 

and execution time only affected by the web 

service workload. This value must be 

continuously updated for each web service 

because the work load of web service may change 

during the work time. Execution cost is a fee 

received by service provider from service 

requester for each execution. This fee is 

determined by service provider and may change 

according to web service provider‟s financial 

policy. Availability is the degree that a web 

service is accessible and ready for immediate use. 

This value can be defined as [uptime/ (uptime + 

downtime)]. Downtime includes the time that web 

service is inaccessible and time taken to repair it. 

This value should be updated by service provider. 

Reputation is the average reputation score of a 

web service evaluated by the clients. The 

individual reputation scores are likely to be 

subjective, but the average score becomes 

trustable as the total number of the usages 

increases [6]. The successful Execution Rate is the 

percentage of requests that a web service perform 

successfully when web service is available. It is 

computed by dividing the number of successful 

performed requests by the total number of 

requests. The QoS properties used in this paper is 

summarized in Table 1. 

Table 1. Description  of QoS peoperties used in this paper 

QoS 

property 
Description 

Response 

Time 

Time between receiving request 

and sending response 

Execution 

cost 
Execution cost per request 

Availability 
DownTimeUpTime

UpTime


 

Reputation 
UsageOfNumberTotal

Rep i
 

Successful 

Execution 

Rate RequestofNumberTotal

RequestSuccessfulofNumer
 

 

Notations 

Descriptions of notations used in this paper are as 

follow: 

m: number of tasks. 

n: number of candidate web services for each task. 

pi: i-th atomic process of a composition schema (1 

≤ i ≤ m). 

wsij: j-th candidate web service for the ith atomic 

process, (1 ≤ i ≤ m , 1 ≤ j ≤ n). 

d: index of QoS property . 

wd: weight of the d-th QoS constraint defined by a 

client. 

Cond: permissible value of the d-th QoS property 

(constraints). 

Aggd: aggregated value of the d-th QoS property 

of a composition plan. 

bij: binary decision variable (0 or 1). If bij=1 then 

j-th candidate web service is selected for i-th 

process. 

3.2. QoS-based evaluation of web services 

Since each QoS property may be measured in 

various metrics, they should be normalized for 

appropriate evaluation. The QoS properties are 

divided into two categories: First, negative values, 

such as response time and execution cost, and 

second, positive values, such as availability and 

reputation. The higher value in negative properties 

indicates the lower quality and the higher one in 

positive properties represent higher quality and 

vice versa. The following equations are used to 

normalize positive and negative properties, 

respectively:  
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After normalization, the local value of each web 

service that is candidate for a task will be 

computed from the following formula. Where Q is 

the number of QoS properties. 






q

i

iiij qwwsofValueLocal

0

 (3) 

3.3. Aggregation value of QoS property 

Generally, composition plans are constituted from 

serial, cycle, XOR-parallel, and AND-parallel 

execution patterns. According to the definition of 

QoS properties in section 3.1, the aggregative 

value of web service composition is calculated 

regarding to its workflow pattern. The description 

and aggregation values of workflow patterns are 

discussed below. 

Serial pattern is an execution pattern in which 

services are executed one after another and there 

is no overlap between execution periods of web 

services. Figure 4 illustrates this pattern and Table 

2 represents the aggregation value of this pattern. 

According to Table 3 to calculate aggregation 

value of response time and execution cost, each 

web service value should be added to each other. 

Besides, in order to calculate aggregation value of 

availability and successful execution rate, web 

services values should be multiplied by each other 

because web services are independent from each 

other. The aggregative value of reputation is 

obtained by taking average of reputation values of 

web services. 

 

 

Figure 4. Serial Pattern. 

 

Cycle pattern is a kind of sequential pattern in 

which the web service executes for limited cycles. 

According to Table 3, the aggregation values of 

this pattern are similar to sequential pattern. 

Figure 5 describes this pattern. 

 

Table 2. Aggregative QoS value for serial pattern 
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Figure 5. A cycle pattern. 

Table 3. Aggrigative QoS value for a cycle pattern 

Response Time ).(* RTWSm  

Execution Cost ).(* RTWSm  

Availability AvaWS.  

Successful Execution 

rate 
SucWS.  

Reputation pWS Re.  

 

XOR-parallel pattern is an execution pattern in 

which after the completion of the prior web 

service, one of the following web services just 

executes. In this pattern execution of each 

component is non-deterministic; therefore, to 

calculate the aggregation QoS effect of this 

pattern, the worst case should be calculated. We 

can obtain aggregative QoS values of this pattern 

as described in Table 4. Figure 6 depicts this 

pattern. 

AND-parallel pattern is an execution pattern in 

which after the completion of the prior web 

service, the entire subsequent web services are 

executed simultaneously. The aggregative QoS 

values of this pattern are described in Table 5. 

Notice that to obtain aggregative response time, 

we use the Max function, because all subsequent 

…

…. 
WS1 WS2 WSm 

WS 

K times 
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components are executed simultaneously. Figure 7 

describes this pattern. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. XOR-parallel pattern. 

 

Table 4. Aggregative QoS value for XOR-parallel pattern 
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Figure. 7. AND-parallel pattern. 
 

Table 5. Aggrigative QoS value for XOR-parallel pattern 
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4. The GA based algorithm 

In this section, we present our approach to find an 

optimal web service composition plan Since the 

number of all composition plans of this problem is 

very large (n
m
), some ideas to improve GA are 

presented so that it quickly converges the 

appropriate composition plan. We introduce some 

idea for initialization, crossover and mutation of 

chromosomes. Also the method to escape from 

local optimum is represented. If the algorithm 

cannot find the optimal plan in a specific time, 

without losing best plans of previous step, the 

algorithm will escape from local optimum. 

Constraints 

There are two constraints. The first constraint is 

that only one web service among candidate web 

services should be chosen for a task. In other 

words, the equation (4) has to be satisfied. The 

second constraint is that the service composition 

must satisfy user constraints. For negative QoS 

properties, such as execution cost and time the 

aggregation values must be smaller than user 

constraints. For positive QoS properties, 

aggregation values must be greater than user 

constraints. Equation (5) describes this constraint. 






n

i

ij mib

0

11  
(4) 









sconstraintposotiveFor

sconstraintnegetiveFor

dd

dd

ConAgg

ConAgg
 (5) 

 

Algorithm construction 

To obtain relation between local optimum and 

global optimum chromosomes, several 

experiments have been carried out. We design a 

small example of composition plan with m=10 

and n=6 in which the number of plans is 10
6
. 

Initially, all web services should be sorted 

according to their local values. Then, the best 

composition plan is found by using enumeration 

methods. In this method, all composition plans are 

obtained and evaluated. Table 6 shows the 

percentage of web services that are selected for 

global optimum plan. The closer this amount is to 

9, the higher its local value will be. About 36.6% 

of web services in the composition plans have 

best local values too. It can be inferred that about 

70% of web services that are selected for the best 

composition plan belong to 30% of the best web 

services that have high local values. Figureure. 8 

depicts the values of fitness function of all plans. 
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In this diagram, each two adjacent points that 

demonstrate two adjacent plans, differ only in one 

web service. As depicted in this figure, for this 

small example, several local optimums exist so 

the algorithm should be changed so that it can 

escape from them; to escape from these local 

optimums, the various forms of randomness is 

required. 

 

 

Figure. 8. Value of all plans in example with 6 tasks and 10 web services. 

Table 6. Relation between Local and global optimum 

WS number Percentage of repeat in best plan 

1 2.2% 

2 1.6% 

3 4.4% 

4 5.5% 

5 6.2% 

6 9.0% 

7 12.2% 

8 22.3% 

9 36.6% 

Construction of chromosome is described in 

Figure 9. Each chromosome consists of m genes 

and each gene has a value between 1 to n. 

 

Figure 9. Chromosome structure. 

The main body of the algorithm is summarized in 

Table 7 and specifications of its functions are 

described in Tables 8, 9, 10, 11 and 12. At first, 

we should calculate local value of each web 

service. This is done prior to execution of 

composition plan optimization. Local value is a 

criterion of goodness among the candidate web 

services of a specific task. To obtain the local 

value, the QoS properties are normalized 

according to equations (1) and (2), and then the 

local value is calculated using equation (3). To 

obtain an optimized composition plan at first, web 

services candidate for a task are sorted according 

to their local values. In the next step, 

chromosomes are generated. 20% of all 

chromosomes are selected from 20% of best web 

services that have high local value and the 

remaining 80% is selected randomly. For each 

chromosome fitness function is calculated by 

using equation (9). It is derived from objective 

functions of [6, 10, 15]. D1 is used for negative 

values and D2 is used for positive values. If the 

fitness function value is equal or smaller than 0, it 

will mean that the appropriate composition plan 

satisfying user constraints is found. 
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21 DDFunctionFitness   (9) 

Crossover is a function to combine two or more 

parent chromosomes and obtain one or more child 

chromosomes. We define two kinds of crossover. 

In crossover type 1 shown in Figure 10, genes of a 

child are inherited from parents alternatively. In 

crossover type 2 shown in Figure 11, a certain 

percentage of genes are inherited from one parent 

and the other genes are inherited from the other 
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parent. For crossover operation, 20% of best 

chromosomes having high fitness are combined 

with each other by crossover type 1 and for the 

remaining 80%, each chromosome is combined 

with a randomly selected chromosome belonging 

to 20% of chromosomes with high fitness function 

by crossover type 2.  

 
 

 
To select chromosomes for the next step 

(selection function), constant number of best 

chromosomes from the previous step are selected 

and replaced with worst chromosomes in current 

step. This results in preservation of best 

chromosomes but accelerates the convergence of 

the algorithm to the local optimum. To escape 

from local optimum we design mutation and 

partial initialization chromosomes functions. In 

mutation, some genes of some chromosomes that 

are selected randomly will change with 

probability of Pm. 

To fix the selection function accelerating the 

convergence of the algorithm to the local 

optimum, the Partial initialization chromosomes 

function is presented. In this function, a constant 

number of best chromosomes are kept and other 

chromosomes are generated randomly again. 

5. Experiments 

We have accomplished several experiments to 

evaluate our algorithm. The programming 

language used to do the evaluation is Java and the 

algorithm is executed on desktop PC with 

Pentium 2.2 GHz dual core CPU and 3 GB of 

RAM. We compare the execution time of our 

algorithm with enumeration method. The first 

experiment was performed with 30, 50 and 100 

tasks. For each task we have 30, 40 and 50 web 

services. As shown in Figureure. 12, the 

maximum execution time of the algorithm is 377 

milliseconds. In a separate run, another 

experiment is performed with 100 web services in 

which the number of tasks is 20, 40 and 50. In this 

experiment the maximum time is equal to 240 

milliseconds. The results are shown in Figureure. 

13. Figure 14 shows the result of enumeration 

method. In enumeration method, the plans are 

generated until the suitable plan is founded. From 

this diagram, it can be inferred that the time of 

execution increases exponentially when number 

of tasks increase linearly. Furthermore, we 

compare our work with the work represented in 

[6]. They provide a solution for composition plan 

optimization using a combination of Tabu search 

and simulated annealing approach. The result of 

this comparison is shown in Figure 15. 
Table 7. Main body of algorithm 

Function Composition_Plan_Optimizer 

     Sort all web services according to their local 

value; 

     Initialize chromosomes (); 

     Sort all chromosomes according to their local 

score; 

     Counter=0; 

     While not find appropriate plan do 

          Crossover (); 

          Sorts all web services according to their 

local score; 

          Selection (); 

          Sorts all web services according to their 

local score; 

          Mutation (); 

          Sorts all web services according to their 

local score; 

          Counter=counter+1; 

          If (counter % T=0) Do 

               Partial_initialization_Chromosome(); 

          End if 

     End While 

End Function 

Table 8. Initialization chromosomes function 

Function Initialization Chromosome 

For 20% of population do 

Select chromosome genes are selected 

randomly from 20% of best web 

services 

End For 

For 80% of population do 

Select chromosome genes are selected 

randomly. 

End For 

End Function 
 

   Table 9. Crossover function 

Function Crossover 

20% of best chromosomes are combined with 

each other by     crossover type 1. 

80% of remaining chromosomes are 

combined with 20% of best chromosomes 

with crossover type 2. 

End Function 

Figure 11. Crossover type 2. 

 

Parents Child 

Figure 10. Crossover type 1. 

Parents Children 
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Table 10. Selection function 

Function Selection 

Replace N number of best chromosomes 

from previous step with N worst 

chromosomes of current step 

End Function 

 

Table 11. Mutation function 

Function Mutation 

With probability of Pm, some genes of some 

chromosomes are changed randomly 

End Function 

 

Table 12. partial_initialization_chromosomes function 

Function Partial_initialization_chromosomes 

Keep N number of the best chromosomes 

and other chromosomes are initialized 

again. 

End Function 

 

 

Figure 12. Performance of GA based algorithm 

 

 
Figure 13. Performance of GA based algorithm with 100 

tasks. 

 
Figureure. 14. Performance of enumeration method 

 

 
Figureure. 15. Compare with Tabu search approach 

Furthermore, one of the important factors  having 

the significant impact on the execution time is the 

population size. Figureure. 16 shows the impact of 

the population size on the execution time. In this 

experiment, the number of web services is 100 

and the numbers of tasks are 20, 40 and 50 

respectively. As it can be inferred from the 

diagram, the best population size is in range of 

300 to 500. 

 

 
Figure 16. Impact of population number on the 

performance of algorithm (web service=100). 

6. Conclusion 

In this paper, we showed how can find the suitable 

web service composition using genetic 

algorithms. Some new ideas for generating 

chromosomes, selection and crossover functions 

were proposed. The experimental results 
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demonstrated the advantages of the proposed 

ideas are to overcome local optimums. 

Experimental results show that since GA is a K 

beam search, it can find suitable composition plan 

much faster than other random search approaches. 

Therefore, it can be concluded that applying 

genetic algorithms in such problems has a great 

effect on improving computation time. As a future 

work, we suggest examining effects of using 

different formulas for fitness function. 
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