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Abstract 
Outlier detection is an important task for intrusion detection and fault diagnosis in wireless sensor networks 
(WSNs). Outliers in sensed data may be caused due to compromised or malfunctioning sensor nodes. In this 
paper, we propose a centralized and a distributed approach based on the principal component analysis (PCA) 
for outlier detection in WSNs. In the distributed approach, we partition the network into multiple groups of 
sensor nodes. Each group has a group head and several member nodes. Every member node uses a fixed-
width clustering algorithm and sends a description of its local sensed data to the group head. The group head 
then applies a distributed PCA to establish a global normal pattern and detect outliers. This pattern is periodi-
cally updated using weighted coefficients. We compare the performance of the centralized and distributed 
approaches based on the real sensed data collected by 54 Mica2Dot sensors deployed in Intel Berkeley Re-
search Lab. The experimental results show that the distributed approach reduces both communication over-
head and energy consumption, while achieving comparable accuracy. 

Keywords: Wireless sensor network; Outlier detection; Principal component analysis. 

1. Introduction 
Wireless sensor networks (WSNs) are composed 
of a large number of tiny sensor nodes deployed 
in an environment for monitoring and tracking 
purposes. Sensor nodes use ad-hoc communica-
tions and collaborate with each other to sense dif-
ferent phenomena that may vary in time and 
space, and send the sensed data to a central node 
for further processing and analysis [1]. WSNs are 
applied to various applications, ranging from mil-
itary to civilian fields. 
The data sensed and collected by sensor nodes are 
often unreliable. The quality of the sensed data 
may be affected by noise or missing values. The 
low cost and low quality sensor nodes have limi-
tations in power supply, memory, computational 
capabilities, and communication bandwidth [1]. 
These limitations make the sensed data unreliable 
and inaccurate. Particularly, when power supply is 
exhausted, the probability of generating erroneous 
data will grow rapidly [2]. On the other hand, the 

operations of sensor nodes are frequently sus-
ceptible to environmental effects. The vision of 
large scale and high density WSNs is to randomly 
deploy a large number of sensor nodes in harsh 
and unattended environments [3]. Since events oc-
curred in the real world (e.g., forest fire or earth-
quake) cannot be accurately detected using erro-
neous data, it is extremely important to ensure the 
reliability and accuracy of the sensed data [4], [5]. 
An outlier is an observation (or a set of observa-
tions) in a data set, which appears to be inconsis-
tent with the remainder of that data set [6]. The 
term outlier, also known as anomaly, originally 
stems from the field of statistics [7]. Outlier detec-
tion, also known as anomaly detection, is one of 
the fundamental tasks of data mining along with 
predictive modeling, cluster analysis, and associa-
tion analysis [8]. 
In WSNs, outliers can be defined as those data 
that have significant deviations from the normal 
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pattern of the sensed data [9]. Potential sources of 
outliers include noise, actual events, or malicious 
attacks [8]. A straightforward approach for outlier 
detection in WSNs is to establish a normal pattern 
of the sensed data and detect data that deviate sig-
nificantly from the established pattern as outliers. 
As environmental conditions may change over 
time, a predefined normal pattern will not be suf-
ficiently representative for future outlier detection. 
Thus, a key challenge here is to dynamically 
detect outliers with acceptable accuracy while mi-
nimizing communication overhead and energy 
consumption. 
In WSNs, the energy consumption in the radio 
communication is significantly greater than of that 
in the computation [10]-[12]. For example, in 
Sensoria sensors and Berkeley motes, the ratio 
between communication and computation energy 
consumption ranges from 103 to 104 [13]. Hence, 
we can take this advantage to prolong the network 
lifetime through increasing computational cost in 
order to reduce communication overheads. 
Principal component analysis (PCA) is a powerful 
technique for analyzing and identifying patterns in 
data [14]. It finds the most important axis to ex-
press the scattering of data [15]. By using PCA, 
the first principal component is calculated, which 
reflects the approximate distribution of data. 
In this paper, we propose a centralized and a dis-
tributed PCA-based approach for outlier detection 
in WSNs. We partition the network into groups of 
sensor nodes. Each group has a group head and 
several member nodes. In the centralized ap-
proach, every member node sends its local sensed 
data to the group head. The group head then ap-
plies PCA to establish a global normal pattern and 
detect outliers. In the distributed approach rather 
than sending all sensed data, every member node 
uses a fixed-width clustering (FWC) algorithm 
and sends a description of its local sensed data to 
the group head. The group head then applies a 
distributed PCA (DPCA) to establish the global 
normal pattern. In these two approaches, the es-
tablished normal pattern is periodically updated 
using weighted coefficients. We compare the per-
formance of the centralized and distributed ap-
proaches based on real sensed data collected from 
54 Mica2Dot sensors deployed in Intel Berkeley 
Research Lab. In comparison to the centralized 
approach, we show that the distributed approach 
can achieve significant reductions in communica-
tion overhead and energy consumption, while 
achieving comparable accuracy. 
The rest of this paper is organized as follows: Sec-
tion 2 briefly reviews some related work. Section 

3 formally introduces the problem of outlier de-
tection in WSNs. Sections 4 and 5 describe the 
centralized and distributed outlier detection ap-
proaches, respectively, and Section 6 analyzes the 
communication overhead and computational cost 
of them. Section 7 reports the experimental results 
and finally Section 8 draws some conclusions. 

2. Related work 
In monitoring WSNs, due to the critical nature of 
applications in many cases, sensed data collected 
from various sensor nodes should be analyzed 
dynamically and compared to an established nor-
mal pattern in order to detect potential outliers. 
Janakiram et al. [16] proposed a technique based 
on Bayesian belief networks (BBNs) for outlier 
detection in the sensed data. The technique uses 
BBNs to capture the spatio-temporal correlations 
among the observations of sensor nodes and the 
conditional dependencies among the observations 
of sensor features. Each node trains a BBN to 
detect outliers based on its neighbors' sensed data 
as well as its own sensed data. An observation is 
considered as outlier if it falls beyond the range of 
the expected class. Accuracy of a BBN depends 
on how the conditional dependencies among the 
observations of sensor features exist. This tech-
nique does not work well when the resources are 
limited and the network topology changes dynam-
ically. 
Rajasegarar et al. [17], [18] proposed two distri-
buted outlier detection approaches. The first ap-
proach is based on clustering. In this approach, 
sensor nodes have a hierarchal topology. At the 
end of each time window, every sensor node clus-
ters its sensed data and sends the statistics of the 
clusters to its immediate parent node. The parent 
node then merges its own clusters with the clus-
ters collected from its intermediate children nodes 
and sends the statistics of the merged clusters to 
its immediate parent node. This process continues 
recursively up to the gateway node, where an out-
lier detection algorithm is applied on its merged 
clusters to detect outlier clusters. An outlier clus-
ter can be determined in the gateway node, if the 
cluster's average inter-cluster distance is larger 
than one threshold value of the set of inter-cluster 
distances. Determining the parameter used to 
compute the average inter-cluster distance is not 
always easy. The second approach is based on 
one-class quarter sphere SVM. Every sensor node 
runs the one-class quarter-sphere SVM on its 
sensed data and sends its local radius to its parent 
node. The parent node then combines its own lo-
cal radius with radii collected from its children 
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nodes and sends the global radius to its children 
nodes. The children nodes use the global radius to 
locally detect outliers. The sensed data that lies 
outside the global quarter sphere are considered as 
outliers. This approach ignores spatial correlations 
of neighboring sensor nodes, which makes the 
results of local outliers inaccurate. 
Chatzigiannakis et al. [5] proposed a centralized 
outlier detection approach in which PCA is ap-
plied on the sensed data of all sensor nodes in or-
der to reduce the dimensionality of them. The first 
few most important derived principal components 
are then selected to be used in the subspace me-
thod. The goal of this method is to divide the cur-
rent sensed data into normal and anomalous spac-
es. However, this approach has several draw-
backs. It uses squared prediction error (SPE) to 
perform outlier detection in the residual space. 
Since SPE is sensitive to modeling errors, it may 
increase the false alarm rate. Also, sending all 
sensed data to a central node leads to a high com-
munication overhead, which is a major source of 
energy consumption for sensor nodes. 
Sheng et al. [19] proposed a histogram-based 
technique to detect global outliers over the sensed 
data. This technique attempts to reduce communi-
cation overhead by collecting hints in the form of 
a histogram rather than collecting all sensed data 
in a central node. The central node uses the hints 
to extract the data distribution in the network and 
detect the potential outliers. However, this tech-
nique does not consider the inter-feature depen-
dencies of multi-dimensional sensed data. 
Ahmadi Livani et al. [14] proposed an energy-
efficient approach for detecting outliers in the 
sensed data. The outlier detection procedure is 
comprised of two phases: training and outlier de-
tection. In the training phase, every sensor node 
computes a description of its local sensed data and 
sends it to its group head. After receiving descrip-
tive data from all member nodes, the group head 
applies the approximate global PCA (AGPCA) to 
establish a global normal pattern and sends it to 
all member nodes. In the outlier detection phase, 
every member node detects outliers based on their 
projection distances from the global first principal 
component. 

3. Problem definition 
We consider a WSN composed of a set of sensor 
nodes deployed in a homogenous environment. 
The sensor nodes are synchronized and their 
sensed data belong to the same unknown distribu-
tion. We partition the network into multiple groups 
of sensor nodes. Each group has a group head and 

several member nodes. The sensor nodes within 
the same group are physically close to each other 
and sense a similar phenomenon. The partitioning 
can be static or dynamic [20]. In the dynamic par-
titioning, the network may be rearranged periodi-
cally, if the environmental conditions change. 
Let ܩ = :ݏ} ݅ = 1…  be a group of sensor {ݏ
nodes. At each time interval ∆ݐ, every member 
node ݏ ∈ ݔ senses a data vector ܩ . Each data 
vector is composed of features ݔ ݔ : = ଵݔ) , ଶݔ , ⋯ , ௗݔ ݔ   ,( ∈ ℜௗ  . (1)

During each time window ݏ ,ݐ senses a set of data 
vectors ܺ(ݐ) = ݔ} :(ݐ) ݇ = 1…݊}. An outlier in 
a set of data vectors is defined as a data vector 
that has significant deviation from the other data 
vectors. Our aim is to detect outliers in data vec-
tors sensed by the member nodes. 

4. Centralized outlier detection approach 
In this section, we propose a centralized approach, 
for outlier detection in WSNs. It consists of three 
phases: training, outlier detection, and updating. 

4.1. Training phase 
The training phase involves modeling the distribu-
tion of a given set of normal data vectors. Let ܩ 
be a group of sensor nodes. In this approach, 
every member node ݏ ∈  sends its sensed data ܩ
vectors to the group head ீݏ. After receiving the 
data vectors from all member nodes, ீݏ combines 
its own data vectors with them and forms a set of 
data vectors 	ܺ(0): 
ܺ(0) = ൦ ଵܺ(0)ܺଶ(0)⋮ܺ௦(0)൪  , (2)

where ܺ(0) is an ݊ × ݀ matrix of data vectors 
sensed by the member node ݏ, ݅ = ݊ So, ܺ(0) is an .ݏ…1 × ݀ matrix, whose rows are the data 
vectors and columns are the features. 

݊ =݊௦
ୀଵ . (3)

of ܺ(0) and the global covariance matrix ܵ(0) of ܺ(0): ܵ(0) (0)ݔ̅ first normalizes the matrix ܺ(0) to a range of [0,1]. It then computes the global column means ீݏ = ଵ ܫ)(0)்ܺ − ଵ ்݁݁ )ܺ(0)  , (4)

where ݁ ≡ (1,1,⋯ ,1)் is a vector of length ݊. 
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To establish a normal pattern, ீݏ computes the 
global first principal component ߮(0). The prin-
cipal components of ܺ(0) are given by a singular 
value decomposition (SVD) [21] of ݊ܵ(0): ݊ܵ(0) = ܸ(0)Σଶ(0)்ܸ(0)  , (5)

where ܸ(0) is the matrix of principal components 
of ܺ(0) and Σଶ(0) = diag(ߣଵଶ(0), ⋯,ଶଶ(0)ߣ ,  (ௗଶ(0)ߣ
is the diagonal matrix of eigenvalues ordered from 
largest to smallest. Note that often ݊ − 1 is used 
instead of ݊ in the above equations when the data 
are a sample from some larger population. 
After that, as shown in Figure 1, ீݏ calculates the 
projection distance of each data vector ݔ (0) ∈ܺ(0) from ߮(0) as ݀(ݔ (0), ߮(0)) = (ฮݔ (0) − ฮଶ(0)ݔ̅ −(்߮(0) ⋅ ݔ) (0) − .  ଶ)భమ(((0)ݔ̅ (6)

The maximum projection distance of all data vec-
tors from ߮(0) is then calculated as ݀max = max1≤݇≤݊ ݀(ݔ (0), ߮(0)) (7)

and the triple (̅(0)ݔ, ߮(0), ݀max) is used to estab-
lish the global normal pattern ܲ(0). 
 

 
Figure 1. The projection distance of a data vector ࢞  from 

the global first principal component ࣐. 

4.2. Outlier detection phase 
To detect outlier data vectors, during each time 
window ݐ, the group head ீݏ first calculates the 
projection distance of each data vector ݔ (ݐ) ݐ)߮ from (ݐ)ܺ∋ − 1) ∈ ݐ)ܲ − 1). It then classifies ݔ -as outlier, if the calculated projection dis (ݐ)
tance is greater than ݀max: 
ቊ݀(ݔ ,(ݐ) ݐ)߮ − 1)) > ݀max :	Outlier݀(ݔ ,(ݐ) ݐ)߮ − 1)) ≤ ݀max :	Normal

  . (8)

4.3. Updating phase 
There might be changes over time in the condi-
tions of the environment in which a WSN is dep-
loyed. Therefore, it is necessary to update the 
global normal pattern. 

Let ݐ be the current time window. To update the 
global normal pattern ܲ(ݐ), the group head ீݏ 
first calculates the global column means and glob-
al covariance matrix of normal data vectors at the ߩ previous time windows (see Figure 2): 

(ݐ)ఘݔ̅ =  ௧(߬)ݔ̅(߬)ݓ
ఛୀ௧ିఘାଵ 	, (9)

ఘܵ(ݐ) =  ௧(߬)ܵ(߬)ݓ
ఛୀ௧ିఘାଵ 	, (10)

where ̅ݔ(߬) and ܵ(߬) are the global column means 
and global covariance matrix at time window ߬, 
respectively. ݓ(߬) is a weighted coefficient as-
signed to the normal data vectors at time window ߬. The Ebbinghaus' forgetting curve [15] is used 
to calculate the weighted coefficients. As shown 
in Figure 3, the purpose of using the forgetting 
curve is to reduce the importance of normal data 
vectors in the old time windows when updating 
the global normal pattern. ீݏ then computes the global first principal com-
ponent ߮(ݐ) by a singular value decomposition of ఘܵ(ݐ) and uses the triple (̅ݔఘ(ݐ), ,(ݐ)߮ ݀max) to 
update the global normal pattern ܲ(ݐ). 
 

Figure 2. Updating the global normal pattern. 
 

Figure 3. The Ebbinghaus' forgetting curve. 
 

The centralized outlier detection approach has 
some major drawbacks. First, a large volume of 
data vectors should be transmitted over the net-
work, which leads to significant decrease of the 
network lifetime. Second, a high communication 
load is imposed on the group head because all 
other member nodes send their data to it. 

Time Window

Weighting Factor 

(2–ݐ)ݓ(1–ݐ)ݓ
(ݐ)ݓ

0 1–ݐ ݐ 2–ݐ  ⋯ ߩ–ݐ

Normal Data Vectors 

Time Window 	1+ߩ–ݐ  ݀ݐ
Projection Distance

Global First Principal Component ߮ 

ݔ  Data Vector 
Mean ̅ݔ 

 ߩ
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In the following section, we propose a distributed 
outlier detection approach employing in-network 
processing and sensor collaborations to prolong 
the network lifetime. 

5. Distributed outlier detection approach 
In this section, we propose a distributed approach 
for outlier detection in WSNs. The approach con-
sists of three phases: training, outlier detection, 
and updating. 
In the training phase, the distribution of normal 
data vectors is modeled. Let ܩ be a group of sen-
sor nodes. Every member node ݏ ∈ -first nor ܩ
malizes its local data vectors ܺ(0). It then applies 
the description procedure on ܺ(0) and sends the 
obtained descriptive data ܦ(0) to its group head ீݏ. Afterwards, ீݏ applies a distributed PCA 
(DPCA) [22] on the set of descriptive data ࣞ(0) 
received from all member nodes and then estab-
lishes a global normal pattern ܲ(0). Figure 4 
shows the pseudo-code of the training phase. 
In the outlier detection phase, during each time 
window ீݏ ,ݐ applies the detection procedure on 
the set of descriptive data ࣞ(ݐ) received from all 
member nodes and detects outliers based upon the 
global normal pattern ܲ(ݐ − 1). Figure 5 shows 
the pseudo-code of the outlier detection phase. 
In the updating phase, at the end of each time 
window ீݏ ,ݐ first applies DPCA on the set of 
normal descriptive data ࣞ∗(ݐ) ⊆ -and com (ݐ)ࣞ
putes the global covariance matrix ܵ(ݐ). It then 
updates the global normal pattern ܲ(ݐ) through 
calculating the global column means and global 
covariance matrix of normal data vectors at the ߩ 
previous time windows. 
Better load balancing is achieved by distributing 
the outlier detection process among all member 
nodes. Also, the communication overhead is re-
duced by sending the description of data vectors 
rather than the whole sensed data vectors. This 
helps to prolong the network lifetime. 

5.1. Data normalization 
Features of data vectors sensed by member nodes 
may have different ranges. Hence, when calculat-
ing the distance between data vectors, features 
with larger values will dominate those features 
with smaller values. Therefore, we normalize each 
feature into a range [0,1] in order to ensure that 
all features have the same influence on the dis-
tance calculation. 
In the centralized approach, all data vectors from 
all member nodes are sent and available at the 
group head. Therefore, the group head can nor-
malize all data vectors. In the distributed ap-
proach, if every member node normalizes its local 

data vectors by using the local minimum and local 
maximum parameters, the resulting normalized 
data vectors will not be exactly the same as those 
of the centralized approach. Hence, we perform 
the following operations to find the global mini-
mum and global maximum parameters in order to 
normalize the local data vectors. 
After each time window ݐ, every member node ݏ ∈ ୫୧୬ݔ computes two vectors ܩ ୫ୟ୶ݔ and (ݐ)  (ݐ)
of minimum and maximum values for its local 
data vectors ܺ(ݐ) and sends them to the group 
head ீݏ. After receiving above vectors from 
member nodes, ீݏ computes the global minimum 
and global maximum vectors ݔ୫୧୬ ݐ) + 1) and ݔ୫ୟ୶ ݐ) + 1), and sends them to all member 
nodes. Every member node ݏ uses these global 
parameters to normalize its local data vectors. 
 

procedure Training 

input: 
A group of sensor nodes ܩ = ݏ} ∶ ݅ = 1…  {ݏ

output: 
A global normal pattern ܲ(0) 

begin 
for all member nodes ݏ ∈  do ܩ

Sense a set of data vectors ܺ(0) and normalize it 
Apply the description procedure on ܺ(0) and send the 
descriptive data ܦ(0) to the group head ீݏ  

end for 
for group head ீݏ  do ࣞ(0) ≔ ሪ ௦ୀଵ{(0)ܦ}   

Apply DPCA on the set of descriptive data ࣞ(0) and 
establish a global normal pattern ܲ(0) 

end for 
end procedure 

Figure 4. The training phase. 
 

procedure Outlier Detection 

input: 
A group of sensor nodes ܩ = ݏ} ∶ ݅ = 1…  {ݏ
The global normal pattern ܲ(ݐ − 1) 

begin 
for each time window ݐ do 

for all member nodes ݏ ∈  do ܩ
Sense a set of data vectors ܺ(ݐ) and normalize it 
Apply the description procedure on ܺ(ݐ) and send 
the descriptive data ܦ(ݐ) to the group head ீݏ  

end for 
for group head ீݏ  do 

Detect outliers based upon ܲ(ݐ − 1) 
end for 

end for 
end procedure 

Figure 5. The outlier detection phase. 
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5.2. Data description 
Every member node ݏ ∈  of (ݐ)ܦ computes a so-called descriptive data ,ݐ at each time window ,ܩ
its normalized data vectors ܺ(ݐ) and sends it to 
the group head ܦ .ீݏ(ݐ) is represented as a ter-
nary ܦ(ݐ) = ,(ݐ)ݔ̅) ܴ(ݐ),  is (ݐ)ݔ̅ where ,((ݐ)ܥ
the column means of ܺ(ݐ), ܴ(ݐ) is the matrix 
obtained by the QR decomposition [22] of the 
column-centered matrix of ܺ(ݐ), and ܥ(ݐ) is the 
description of clusters formed by the clustering 
operation on ܺ(ݐ). Our clustering algorithm is 
based on the fixed-width clustering (FWC) algo-
rithm [23]. 
Figure 6 shows the pseudo-code of the algorithm 
FWC that takes ܺ(ݐ) as input and groups its data 
vectors into a set of clusters ܥ(ݐ) of fixed radius ݓ. For each data vector ݔ (ݐ) ∈ ܺ(ݐ), if ܥ(ݐ) is 
empty, a new cluster ܥଵ(ݐ) is created with ݔ  (ݐ)
as its centroid. Otherwise if the distance between ݔ  is less than or (ݐ)ܥ and the centroid of (ݐ)
equal to ݓ, ݔ ୫୧୬ܥ is added to the nearest cluster (ݐ) ୫୧୬ܥ and the centroid of (ݐ)  is adjusted to (ݐ)
the mean of the data vectors it contains. Other-
wise, a new cluster ܥ(ݐ) is created with ݔ  as (ݐ)
its centroid. This operation forms a set of disjoint 
clusters ܥ(ݐ). Finally, the radius of each cluster ܥ(ݐ) ∈  is set to the outermost data vector in (ݐ)ܥ
the cluster. 

5.3. Establishing global normal pattern 
Let ࣞ(0) be the set of descriptive data received by 
the group head (0)ࣞ .ீݏ =ራ ௦ୀଵ{(0)ܦ} 	, (11)

where ܦ(0) = ,(0)ݔ̅) ܴ(0), -(0)) is the deܥ
scriptive data of the member node ݏ. 
In order to establish a global normal pattern, ீݏ 
first applies DPCA on ࣞ(0) to compute the global 
first principal component ߮(0). For this purpose, ீݏ first computes the global column means of ܺ(0): 
(0)ݔ̅ = 1݊݊̅ݔ(0)௦

ୀଵ  (12)

and then computes the QR decomposition of each 
pair of matrices ܴ(0) and ܴ(0) received from 
member nodes by using Givens rotations: ܴ(0)ܴ(0)൨ = ܳ(,)(0)ܴ(,)(0)  . (13)

Next, ீݏ continues this operation until ℓ = |logଶ௦| 

steps to obtain ܴ(ଵ,ଶ,…,௦)(0) and computes the QR 
decomposition of the following upper-trapezoidal (ݏ + ݀) × ݀ matrix: 

ێێۏ
ଵ(0)ݔ̅)ଵ݊√ۍێێ − ଶ(0)ݔ̅)ଶ݊√((0)ݔ̅ − ௦(0)ݔ̅)ඥ݊௦⋮((0)ݔ̅ − (0)(ଵ,ଶ,…,௦)ܴ((0)ݔ̅ ۑۑے

ېۑۑ = ܳ(0)ܴ(0)  . (14)

Next, ீݏ computes the global first principal com-
ponent ߮(0) of ܺ(0) by a singular value decom-
position of ܴ(0): ܴ(0) = ܷ(0)Σ(0)்ܸ(0)  . (15)

Notice that the computed global principal compo-
nents are exactly the same as those computed 
from the centralized approach. 
We can easily calculate the global covariance ma-
trix ܵ(0) as ܵ(0) = ଵ ்ܴ(0)ܴ(0)  , (16)

 

procedure FWC 

input:  
    A set of data vectors ܺ(ݐ) = ൛ݔ (ݐ) ∶ ݇ = 1…݊ൟ 
    Cluster radius ݓ 
output: 
    A set of clusters ܥ(ݐ) = ൛ܥ(ݐ) ∶ ݆ = 1… ݈ൟ 
begin 
(ݐ)ܥ     ≔ ∅ 
    for each data vector ݔ (ݐ) ∈ ܺ(ݐ) do 
        if ܥ(ݐ) = ∅ then 
            Create a new cluster ܥଵ(ݐ) with centroid ݔ  and (ݐ)

radius ݓ 
(ݐ)ܥ             ≔ ൛ܥଵ(ݐ)ൟ  
        else 
            Find the nearest cluster ܥ୫୧୬ (ݐ) ∈ ݔ to (ݐ)ܥ  (ݐ)
            if ݀(ݔ ,(ݐ) ୫୧୬ܥ ((ݐ) ≤   thenݓ
                Add ݔ ୫୧୬ܥ to (ݐ)  and update its centroid (ݐ)
            else 
                Create a new cluster ܥ(ݐ) with centroid ݔ  (ݐ)

and radius ݓ 
(ݐ)ܥ                 ≔ (ݐ)ܥ ∪ ൛ܥ(ݐ)ൟ  
            end if 
        end if 
    end for 
    for each cluster ܥ(ݐ) ∈  do (ݐ)ܥ
        Find the outermost data vector ݔ  (ݐ)ܥ in cluster (ݐ)
        Set the radius of cluster ܥ(ݐ) to ݀(ݔ ,(ݐ)  ((ݐ)ܥ
    end for 
end procedure 

Figure 6. The FWC algorithm. 
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Finally, ீݏ calculates the distance of each cluster ܥ(0) ∈ ࣞ(0) from ߮(0): ݀(ܥ(0), ߮(0)) = ݀( ܿ(0), ߮(0)) + ,  (0)ݎ (17)

where ܿ(0) and ݎ(0) are the centroid and radius 
of ܥ(0), respectively. ݀( ܿ(0), ߮(0)) is the pro-
jection distance from ܿ(0) to ߮(0). 
The triple (̅(0)ݔ, ߮(0), ݀max) is then used to es-
tablish the global normal pattern ܲ(0), where ݀max is the maximum distance of all clusters in ࣞ(0) from ߮(0). ݀max = maxଵஸஸ௦,ଵஸஸ ,(0)ܥ)݀ ߮(0))		. (18)

It should be mentioned that ݀max is used in the 
outlier detection phase to detect data vectors that 
have significant deviation from the global normal 
pattern. 

5.4. Outlier detection 
Let ࣞ(ݐ) be the set of descriptive data received by 
the group head ீݏ at time window ݐ and ܥ(ݐ)  be the description of clusters of the member (ݐ)ࣞ∋
node ݏ. In order to detect outliers, ீݏ first calcu-
lates the distance of each cluster ܥ(ݐ) ∈  (ݐ)ܥ
from ߮(ݐ − 1) ∈ ݐ)ܲ − ,(ݐ)ܥ)݀ :(1 ݐ)߮ − 1)) = ݀( ܿ(ݐ), ݐ)߮ − 1)) (19) .  (ݐ)ݎ+

It then classifies ܥ(ݐ) as outlier, if the calculated 
distance is greater than ݀max: 
ቊ݀(ܥ(ݐ), ݐ)߮ − 1)) > ݀max :	Outlier݀(ܥ(ݐ), ݐ)߮ − 1)) ≤ ݀max :	Normal

  . (20)

If the number of outlier clusters received from a 
member node is greater than a threshold, the de-
scriptive data received from that node will be dis-
carded. 

6. Complexity analysis 
In this section, we analyze the communication 
overhead and computational cost of the centra-
lized and distributed approaches in more detail. 
In the centralized approach, at each time window, 
every member node ݏ should communicate to the 
group head to send its local sensed data vectors. 
Hence, it incurs a communication overhead of ܱ(݊݀), where ݊ is the number of data vectors 
sensed during the time window and ݀ is the num-
ber of features of data vectors. Also, in order to 
establish or update the global normal pattern, first, 
the group head should calculate the global column 

means and global covariance matrix of normal 
data vectors for several previous time windows, 
which has a computational cost of ܱ(݊݀ଶ), where ݊ is the number of received data vectors. Then, it 
should perform a singular value decomposition to 
compute the updated global first principal compo-
nent, which has a computational cost of ܱ(݀ଷ). 
In the distributed approach, at each time window, 
in order to normalize the data vectors, every mem-
ber node ݏ should communicate to the group head 
to send a pair of vectors of minimum and maxi-
mum values for its local data vectors. The group 
head should communicate with all the member 
nodes to return to them the global minimum and 
maximum vectors. Also, in order to compute a de-
scription of normalized data vectors, every mem-
ber node ݏ should perform the QR decomposition 
and clustering operations. Hence, it incurs a com-
munication overhead of ܱ(݀ଶ) and a computa-
tional cost of ܱ(݊2݀), where ݊ is the number of 
data vectors sensed during the time window and ݀ 
is the number of features of data vectors. Also, in 
order to establish or update the global normal pat-
tern, first, the group head should apply DPCA on 
normal descriptive data and calculate the global 
column means and global covariance matrix of 
normal data vectors for several previous time 
windows, which has a computational cost of ܱ(݀ଷ logଶ  is the number of member ݏ where ,(ݏ
nodes. Then, it should perform a singular value 
decomposition to compute the updated global first 
principal component, which has a computational 
cost of ܱ(݀ଷ). 
Table 1 shows the comparison between the com-
munication overhead and computational costs of 
the centralized and distributed approaches. 

 
Table 1. Comparing the centralized and distributed 

approaches for communication overhead and 
computational cost 

 
Computational 

Cost of the 
Group Head 

Computational 
Cost of a 

Member Node 

Communication 
Overhead of the 

Network 

Centralized 
Approach ܱ(݊݀ଶ) – ܱ(݊݀) 

Distributed 
Approach ܱ(݀ଷ logଶ ݏ) (ଶ݀ݏ)ܱ (ଶ݀݊)ܱ (ݏ ≪ ݊, ݀ ≪ ݊, ݊ ≪ ݊) 
7. Experimental results 
In this section, we compare the performance of 
the distributed outlier detection approach with that 
of the centralized approach. 
We used the real sensed data collected from 54 
Mica2Dot sensors deployed in Intel Berkeley Re-
search Lab between February 28 and April 5, 
2004. The sensed data included humidity, temper-
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ature, light, and voltage values collected once in 
31 seconds. In the experiments, we first parti-
tioned the sensor network into eight groups of 
sensor nodes using the grouping algorithm in [20]. 
We then selected data from a group that included 
six nodes, namely nodes 37 to 42. We also ran-
domly selected one of nodes and added some 
Gaussian noise to its sensed data to simulate the 
malfunctioning node. The amount of noise was 
measured by the signal-to-noise ratio (SNR). In 
the experiments, the length of time window was 
set to 52 minutes and the parameter ܴܵܰ was set 
to 32 dB. 
Cumulative percent variance (CPV) [24] is a 
measure of the percent variance captured by the 
first few principal components. It can be used to 
evaluate the importance of each principal compo-
nent. Figure 7 shows the percent variance cap-
tured by the global first principal component ߮(ݐ) 
for time windows 0 to 10, in the centralized and 
distributed approaches. As shown in the Figure 7, 
at each time window, the global first principal 
component captures at least 50 percent of the total 
variance of normal data vectors. Hence, we can 
use it to establish the global normal pattern at 
each time window. 
Figure 8 compares the behavior of the malfunc-
tioning node with a normal node during a time 
window of the outlier detection phase, in the cen-
tralized and distributed approaches. As can be 
seen in Figure 8, the malfunctioning node beha-
viors significantly different from the normal node 
and thus it can be easily detected by considering 
the projection distance. 
We examined the effect of varying two parame-
ters: The cluster radius ݓ ranging from 0.01 to 
0.90 and the signal-to-noise ratio parameter ܴܵܰ 
ranging from 0 to 40 dB. 

 

 
Figure 7. The percent variance captured by each 

principal component. 

 
(a) Centralized approach 

 
(b) Distributed approach 

Figure 8. Projection distance from the global first 
principal component during a time window. 

 
Table 2 compares the performance of the distri-
buted approach for different values of ݓ. For this 
sensed data, ݓ = 0.05 is a better choice than 
other values by which the distributed approach 
can achieve a better trade-off between the detec-
tion rate (DR) and false alarm rate (FAR). 

 
Table 2. Average detection and false alarm rates of the 

distributed approach for different values of ࢉ࢝ ࢉ࢝ Distributed Approach 
Average DR Average FAR 

0.01 94.05 2.62 
0.05 93.63 2.35 
0.10 93.20 2.32 
0.30 91.87 1.83 
0.50 94.81 3.40 
0.70 96.24 5.70 
0.90 96.88 6.38 

 
Table 3 compares the performance of the centra-
lized and distributed approaches for different val-
ues of ܴܵܰ. As can be seen in Table 3, the aver-
age detection and false alarm rates for the distri-
buted approach are respectively 96.7% and 3.9%, 
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while for the centralized approach are respectively 
96.4% and 2.7%. Hence, the distributed approach 
achieves a comparable performance to that of the 
centralized approach. 
 

Table 3. Average detection and false alarm rates of the 
centralized and distributed approaches for different val-

ues of ࡾࡺࡿ ࡾࡺࡿ 
 Centralized Approach Distributed Approach 
 Average DR Average FAR Average DR Average FAR 

0  99.98 3.73 99.97 4.91
4  99.91 3.39 99.83 4.67
8  99.82 3.11 99.67 4.36

12  99.71 2.93 99.55 4.13
16  99.26 2.81 99.02 3.96
20  98.65 2.66 98.36 3.75
24  97.56 2.45 97.34 3.56
28  96.26 2.35 96.04 3.44
32  93.89 2.27 94.34 3.40
36  91.32 2.20 92.05 3.31
40  84.24 2.16 87.51 3.26

 

 
Figure 9. Detection rate of the centralized and distributed 

approaches during 50 time windows. 
 

Figure 9 compares the detection rate of the centra-
lized and distributed approaches during 50 time 
windows. As shown in Figure 9, the distributed 
approach is able to detect outlier data vectors with 
a rate similar to that of the centralized approach. 
Table 4 compares performance of the centralized 
and distributed approaches for different lengths of 
time window, Δܶ, ranging from 26 to 156 mi-
nutes. As shown in Table 4, the distributed ap-
proach is able to detect outlier data vectors with a 
rate similar to that of the centralized approach. 
Figures 10 and 11 show reduction in communica-
tion overhead (RCO) [12] in the network for dif-
ferent values of ݓ and Δܶ, respectively. Reduc-
tion in communication overhead is calculated as ܴܱܥ = ݊ − ߬݊ 	, (21)

where ݊ and ߬ are the total number of data sent in 
the centralized and distributed approaches, respec-
tively. 
When compared to the centralized approach, the 
distributed approach achieves 68% to 95% reduc-
tion in communication overhead for ݓ in the 
range of 0.01 to 0.90 and 92% to 96% reduction 
in communication overhead for Δܶ in the range of 
50 to 630 minutes. 

 
Table 4. Average detection and false alarm rates of the 

centralized and distributed approaches for different val-
ues of ઢࢀ ઢࢀ 

Centralized Approach  Distributed Approach 
Average DR Average FAR  Average DR Average FAR 

26 90.92 1.65  91.43 2.22
52 93.89 2.27  94.34 3.40
78 94.48 4.70  94.53 4.89
104 94.00 5.90  94.77 5.48
130 94.46 5.96  95.49 5.94
156 95.15 6.01  95.50 6.05

 

 
Figure 10. Reduction in communication overhead in the 

network for different values of ࢉ࢝. 
 

 
Figure 11. Reduction in communication overhead for 

different values of ઢࢀ. 
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8. Conclusions 
In this paper, we proposed a centralized and a dis-
tributed PCA-based approach to detect outliers in 
sensed data in WSNs. We partition the network 
into groups of sensor nodes. Each group has a 
group head and several member nodes. In the cen-
tralized approach, every member node sends its 
local sensed data to the group head. The group 
head then applies PCA to establish a global nor-
mal pattern and detect outliers. In the distributed 
approach, we partition the network into groups of 
sensor nodes. Each group has a group head and 
several member nodes. Rather than sending all 
sensed data, every member node uses fixed-width 
clustering (FWC) and sends a description of its 
sensed data to the group head. The group head 
then applies distributed principal component anal-
ysis (DPCA) in order to establish a global normal 
pattern and to detect outliers. The established 
normal pattern is periodically updated using a for-
getting curve. 
We compared the performance of the distributed 
approach with that of a centralized approach 
based on real sensed data collected from 54 
Mica2Dot sensors deployed in Intel Berkeley 
Research Lab. The experimental results showed 
that the distributed approach achieves 93.09% 
reduction in communication overhead in compari-
son to the centralized approach, while achieving 
the similar detection and false alarm rates. 
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