A COVERING PROPERTY IN PRINCIPAL BUNDLES | ||
Journal of Algebraic Systems | ||
مقاله 1، دوره 5، شماره 2، فروردین 2018، صفحه 91-98 اصل مقاله (184.4 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2018.1093 | ||
نویسندگان | ||
A. Pakdaman* ؛ M. Attary | ||
Department of Mathematics, University of Golestan, P.O.Box 155, Gorgan, Iran. | ||
چکیده | ||
Let $p:X\lo B$ be a locally trivial principal G-bundle and $\wt{p}:\wt{X}\lo B$ be a locally trivial principal $\wt{G}$-bundle. In this paper, by using the structure of principal bundles according to transition functions, we show that $\wt{G}$ is a covering group of $G$ if and only if $\wt{X}$ is a covering space of $X$. Then we conclude that a topological space $X$ with non-simply connected universal covering space has no connected locally trivial principal $\pi(X,x_0)$-bundle, for every $x_0\in X$. | ||
کلیدواژهها | ||
Principal bundle؛ covering space؛ covering group | ||
آمار تعداد مشاهده مقاله: 1,031 تعداد دریافت فایل اصل مقاله: 777 |