A KIND OF F-INVERSE SPLIT MODULES | ||
Journal of Algebraic Systems | ||
مقاله 5، دوره 7، شماره 2، فروردین 2020، صفحه 167-178 اصل مقاله (170.95 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2019.7211.1353 | ||
نویسندگان | ||
M. Hosseinpour؛ A. R. Moniri Hamzekolaee* | ||
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran. | ||
چکیده | ||
Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct sum of Z2(M) and a Z2-torsionfree Rickart submodule. It is shown under some assumptions that the class of right perfect rings R for which every right R-module M is Z2(M)-inverse split (Z(M)-inverse split) is precisely that of right GV-rings. | ||
کلیدواژهها | ||
Rickart module؛ Z(M)-inverse split module؛ Z^2(M)-inverse split module | ||
آمار تعداد مشاهده مقاله: 953 تعداد دریافت فایل اصل مقاله: 821 |