A KIND OF F-INVERSE SPLIT MODULES | ||
| Journal of Algebraic Systems | ||
| مقاله 5، دوره 7، شماره 2، فروردین 2020، صفحه 167-178 اصل مقاله (170.95 K) | ||
| نوع مقاله: Original Manuscript | ||
| شناسه دیجیتال (DOI): 10.22044/jas.2019.7211.1353 | ||
| نویسندگان | ||
| M. Hosseinpour؛ A. R. Moniri Hamzekolaee* | ||
| Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran. | ||
| چکیده | ||
| Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct sum of Z2(M) and a Z2-torsionfree Rickart submodule. It is shown under some assumptions that the class of right perfect rings R for which every right R-module M is Z2(M)-inverse split (Z(M)-inverse split) is precisely that of right GV-rings. | ||
| کلیدواژهها | ||
| Rickart module؛ Z(M)-inverse split module؛ Z^2(M)-inverse split module | ||
|
آمار تعداد مشاهده مقاله: 1,036 تعداد دریافت فایل اصل مقاله: 909 |
||
