COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q | ||
Journal of Algebraic Systems | ||
مقاله 7، دوره 7، شماره 2، فروردین 2020، صفحه 189-203 اصل مقاله (187.82 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2019.7034.1344 | ||
نویسندگان | ||
M. Ghorbani* ؛ A. Seyyed-Hadi؛ F. Nowroozi-Larki | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran. | ||
چکیده | ||
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $\Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)\rtimes Aut(G,S)$ acts transitively on the set of arcs of $\Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers. | ||
کلیدواژهها | ||
symmetric graph؛ Cayley graph؛ normal graph؛ arc-transitive graph | ||
آمار تعداد مشاهده مقاله: 665 تعداد دریافت فایل اصل مقاله: 862 |