ω-NARROWNESS AND RESOLVABILITY OF TOPOLOGICAL GENERALIZED GROUPS | ||
Journal of Algebraic Systems | ||
مقاله 3، دوره 8، شماره 1، آذر 2020، صفحه 17-26 اصل مقاله (145.29 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2019.8356.1409 | ||
نویسندگان | ||
M. R. Ahmadi Zand* ؛ S. Rostami | ||
Department of Mathematics, Yazd University, P.O. Box 89195 - 741, Yazd, Iran. | ||
چکیده | ||
Abstract. A topological group H is called ω -narrow if for every neighbourhood V of it’s identity element there exists a countable set A such that V A = H = AV. A semigroup G is called a generalized group if for any x ∈ G there exists a unique element e(x) ∈ G such that xe(x) = e(x)x = x and for every x ∈ G there exists x − 1 ∈ G such that x − 1x = xx − 1 = e(x). Also let G be a topological space and the operation and inversion mapping are continuous, then G is called a topological generalized group. If {e(x) | x ∈ G} is countable and for any a ∈ G, {x ∈ G|e(x) = e(a)} is an ω-narrow topological group, then G is called an ω-narrow topological generalized group. In this paper, ω-narrow and resolvable topological generalized groups are introduced and studied | ||
کلیدواژهها | ||
ω-narrow topological generalized group؛ Resolvable topological generalizad group؛ Precompact topological generalized group؛ Invariance number | ||
مراجع | ||
[1] M. R. Ahmadi Zand and S. Rostami, Precompact topological generalized groups, Journal of Mahani Mathematical Research Center, 5 (2016), 27–32. [2] M. R. Ahmadi Zand and S. Rostami, Some topological aspects of generalized groups and pseudonorms on them, Honam Math. J., 40 (2018), 661–669. [3] A. Arhangelskii and M. Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics, Atlantis Press/World Scientific, 2008. [4] W. W. Comfort and J. van Mill, Groups with only resolvable group topologies, Proc. Amer. Math. Soc., 120 (1994), 687–696. [5] R. Engelking, General topology, Revised and Completed Edition, Heldermann Verlag, Berlin, 1989. [6] E. Hewitt, A problem of set-theoretic topology, Duke Math. J., 10 (1943), 309–333. [7] M. R. Mehrabi, M. R. Molaei and A. Oloomi, Generalized subgroups and homomorphisms, Arab. J. Math. Sci., 6 (2000), 1–7. [8] M. R. Molaei, Generalized groups, Bull. Inst. Pol. Din. Iasi, 65 (1999), 21–24. [9] M. R. Molaei, Topological generalized groups, Int. J. Pure Appl. Math., 9 (2000), 1055–1060. [10] M. R. Molaei, Mathematical structures based on completely simple semigroups, Hadronic Press Monographs in Mathematics, Hadronic Press, USA, 2005. [11] J. R. Munkres, Topology, Second edition, Prentice Hall, 2000. [12] G. R. Rezaei and J. Jamalzadeh, The continuity of inversion in topological generalized group, General Mathematics, 20 (2012), 69–73. | ||
آمار تعداد مشاهده مقاله: 577 تعداد دریافت فایل اصل مقاله: 692 |