ON THE COMPUTATIONAL COMPLEXITY ASPECTS OF PERFECT ROMAN DOMINATION | ||
Journal of Algebraic Systems | ||
دوره 10، شماره 2، فروردین 2023، صفحه 189-202 اصل مقاله (420.35 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2021.11146.1554 | ||
نویسندگان | ||
S.H. Mirhoseini؛ N. Jafari Rad* | ||
Department of Mathematics, Shahed University, Tehran, Iran. | ||
چکیده | ||
A perfect Roman dominating function (PRDF) on a graph $G$ is a function $ f:V(G)\to \{0,1,2\}$ satisfying the condition that every vertex $u$ with $f(u) = 0$ is adjacent to exactly one vertex $v$ for which $f(v) = 2$. The weight of a PRDF $f$ is the sum of the weights of the vertices under $f$. The perfect Roman domination number of $G$ is the minimum weight of a PRDF in $G$. In this paper we study algorithmic and computational complexity aspects of the minimum perfect Roman domination problem (MPRDP). We first correct the proof of a result published in [Bulletin Iran. Math. Soc. 14(2020), 342--351], and using a similar argument, show that MPRDP is APX-hard for graphs with bounded degree 4. We prove that the decision problem associated to MPRDP is NP-complete even when restricted to star convex bipartite graphs. Moreover, we show that MPRDP is solvable in linear time for bounded tree-width graphs. We also show that the perfect domination problem and perfect Roman domination problem are not equivalent in computational complexity aspects. Finally we propose an integer linear programming formulation for MPRDP. | ||
کلیدواژهها | ||
Dominating set؛ perfect dominating set؛ Roman dominating function؛ perfect Roman dominating function؛ APX-hard | ||
مراجع | ||
20. A. Pandey and B. S. Panda, Algorithm and Hardness Result for Outerconnected dominating set in graphs. J. Graph Algorithms Appl., 18 (2014), 493–518. 21. A. Pandey, S. Paul and B. S. Panda, Algorithmic aspects of b-disjunctive domination in graphs, J. Comb. Optim., 36 (2018), 572–590. | ||
آمار تعداد مشاهده مقاله: 759 تعداد دریافت فایل اصل مقاله: 532 |