NEW MAJORIZATION FOR BOUNDED LINEAR OPERATORS IN HILBERT SPACES | ||
Journal of Algebraic Systems | ||
دوره 11، شماره 2، فروردین 2024، صفحه 1-12 اصل مقاله (145.98 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2022.11318.1564 | ||
نویسندگان | ||
Farzaneh Gorjizadeh؛ Noha Eftekhari* | ||
Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran. | ||
چکیده | ||
This work aims to introduce and investigate a preordering in $B(\mathcal{H}),$ the Banach space of all bounded linear operators defined on a complex Hilbert space $\mathcal{H}.$ It is called strong majorization and denoted by $S\prec_{s}T,$ for $S,T\in B(\mathcal{H}).$ The strong majorization follows majorization defined by Barnes, but not vice versa. If $S\prec_{s}T,$ then $S$ inherits some properties of $T.$ The strong majorization will be extended for the d-tuple of operators in $B(\mathcal{H})^{d}$ and is called joint strong majorization denoted by $S\prec_{js}T,$ for $S,T\in B(\mathcal{H})^{d}.$ We show that some properties of strong majorization are satisfied for joint strong majorization. | ||
کلیدواژهها | ||
Strong majorization؛ Hilbert space؛ Positive operator | ||
مراجع | ||
1. B. A. Barnes, Majorization, Range inclusion, and factorization for bounded linear operators, Proc. Amer. Math. Soc., 133(1) (2004), 155–162.
2. M. Barraa and M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc., 130(2) (2002), 471–476.
3. R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl., 287(1-3) (1999), 77–85.
4. M. Chō and M. Takaguchi, Boundary points of joint numerical ranges, Pacific J. Math., 95(1) (1981), 27–35.
5. R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413–415.
6. M. S. Moslehian and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl., 591 (2020), 299–321.
7. A. Zamani, M. S. Moslehian, M-T Chien, and H. Nakazato, Norm-parallelism and the Davis-Wieladnt radius of Hilbert space operators, Linear Multilinear Algebra, 67(11) (2019), 2147–2158 | ||
آمار تعداد مشاهده مقاله: 234 تعداد دریافت فایل اصل مقاله: 469 |