POLYMATROIDAL IDEALS AND LINEAR RESOLUTION | ||
Journal of Algebraic Systems | ||
دوره 11، شماره 2، فروردین 2024، صفحه 147-153 اصل مقاله (122.14 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2022.11950.1610 | ||
نویسنده | ||
Somayeh Bandari* | ||
Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran. | ||
چکیده | ||
Let $S=K[x_1,\ldots,x_n]$ be a polynomial ring over a field $K$ and $I\subset S$ be a monomial ideal with a linear resolution. Let $\frak{m}=(x_1,\ldots,x_n)$ be the unique homogeneous maximal ideal and $I\frak{m}$ be a polymatroidal ideal. We prove that if either $I\frak{m}$ is polymatroidal with strong exchange property, or $I$ is a monomial ideal in at most 4 variables, then $I$ is polymatroidal. We also show that the first homological shift ideal of polymatroidal ideal is again polymatroidal. | ||
کلیدواژهها | ||
polymatroidal ideals؛ monomial localization؛ linear quotients؛ linear resolution؛ homological shift ideal | ||
مراجع | ||
1. S. Bandari and J. Herzog, Monomial localizations and polymatroidal ideals, European J. Combin., 34(4) (2013), 752–763.
2. S. Bayati, Multigraded shifts of matroidal ideals, Arch. Math., 111 (2018), 239– 246.
3. A. Conca and J. Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math., 54(2) (2003), 137–152.
4. J. Herzog and T. Hibi, Cohen-Macaulay polymatroidal ideals, European J. Combin., 27(4) (2006), 513–517.
5. J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag, 2011.
6. J. Herzog, S. Moradi, M. Rahimbeigi and G. Zhu, Homological shift ideals, Collect. Math., 72 (2021), 157–174.
7. J. Herzog, A. Rauf and M. Vladoiu, The stable set of associated prime ideals of a polymatroidal ideal, Journal of J. Algebraic Combin., 37(2) (2013), 289–312.
8. J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl., 4(2) (2002), 277–294. | ||
آمار تعداد مشاهده مقاله: 174 تعداد دریافت فایل اصل مقاله: 321 |