Hydrogeophysical Survey for Assessment of Groundwater Budget and Aquifer Protection in Hilly Terrain | ||
Journal of Mining and Environment | ||
مقاله 2، دوره 14، شماره 4، دی 2023، صفحه 1061-1079 اصل مقاله (4.66 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2023.12816.2329 | ||
نویسندگان | ||
Sonu Singh* 1؛ Vijay Shankar1؛ Joseph Tripura2 | ||
1Department of Civil Engineering, National Institute of Technology Hamirpur, India. | ||
2Department of Civil Engineering, National Institute of Technology Patna, India. | ||
چکیده | ||
Assessing the groundwater potential (GWP) and protective capacity of aquifers is essential to provide solutions to challenges in aquifer exploration and conditions in hilly terrain regions. The study was conducted in the hilly terrain region of Hamirpur, Himachal Pradesh, India, to obtain one-dimensional vertical electrical sounding (VES) data for groundwater exploration and evaluate the vulnerability of sublayers. Forty VES sites were used in the Schlumberger electrode configuration. The analysis of data resulted in stratified 2-5 different curves. According to the geoelectric sections, there are two to five layers of soil beneath the region i.e. Shale/clay (10-650 Ohm-m), fractured sandstone/gravel/sand (10.3-436 Ohm-m), clay mix gravel/clay mix sand/coarse-grained sandstones (1.06-355 Ohm-m), conglomerate/clay/hard sandstone (60.5-658.7 Ohm-m), sandstone/shale (90.8-125 Ohm-m) with aquifer resistivity (AR) in parenthesis. Aquifer resistivity (AR), longitudinal conductance (S), layer thickness (LT), and transverse resistivity (TR) distribution maps were generated using interpreted VES data for various sub-layers using ArcGIS 10.1. The geologic second and third sub-surface layers are generally porous and permeable. S values for underlying layers are generally less than unity, which indicates vulnerable zones with a significant risk of contamination. Based on the S values, the strata are divided into five categories as Poor (5.55%), weak (19.43%), moderate (19.45%), good (38.89%), and very good (16.68%). Areas with moderate to very good protection capacity are planned as zones with high GWP. The study results are useful in preliminary pollution control and assessment for sustainable groundwater management. | ||
کلیدواژهها | ||
VES؛ Hydraulic Parameters؛ Geoelectrical Data؛ Aquifer protective capacity؛ Hilly Terrain | ||
مراجع | ||
[1]. Grönwall, J., & Danert, K. (2020). Regarding groundwater and drinking water access through a human rights lens: Self-supply as a norm. Water, 12(2), 419.
[2]. Giordano, M., & Villholth, K. G. (Eds.). (2007). The agricultural groundwater revolution: opportunities and threats to development (Vol. 3). CABI.
[3]. Qureshi, A. S. (2015). Improving food security and livelihood resilience through groundwater management in Pakistan. Glob. Adv. Res. J. Agric. Sci, 4, 687-710.
[4]. Dangar, S., Asoka, A., & Mishra, V. (2021). Causes and implications of groundwater depletion in India: A review. Journal of Hydrology, 596, 126103.
[5]. Walker, D. W., Cavalcante, L., Kchouk, S., Ribeiro Neto, G. G., Dewulf, A., Gondim, R. S., Martins, E. S. P. R., Melsen, L. A., de Souza Filho, F. D. A., Vergopolan, N., & Van Oel, P. R., (2022). Drought diagnosis: What the medical sciences can teach us. Earth's Future, 10(4), e2021EF002456.
[6]. Wada, Y., & Bierkens, M. F. (2014). Sustainability of global water use: past reconstruction and future projections. Environmental Research Letters, 9(10), 104003.
[7]. Konikow, L. F. (2015). Long‐term groundwater depletion in the United States. Groundwater, 53(1), 2-9.
[8]. Elbeltagi, A., Salam, R., Pal, S. C., Zerouali, B., Shahid, S., Mallick, J., Islam, M.S., & Islam, A. R. M. T. (2022). Groundwater level estimation in northern region of Bangladesh using hybrid locally weighted linear regression and Gaussian process regression modeling. Theoretical and Applied Climatology, 149(1-2), 131-151.
[9]. Carter, R., Chilton, J., Danert, K., & Olschewski, A. (2014). Siting of drilled water wells—a guide for project managers, rural water supply network (RWSN), St Gallen, Switzerland.
[10]. Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Processes, 5, 363-383.
[11]. Maity, S., Biswas, R., & Sarkar, A. (2020). Comparative valuation of groundwater quality parameters in Bhojpur, Bihar for arsenic risk assessment. Chemosphere, 259, 127398.
[12]. Banerjee, S., & Sikdar, P. K. (2022). Hydrochemical fingerprinting and effects of urbanisation on the water quality dynamics of the Quaternary aquifer of south Bengal Basin, India. Environmental Earth Sciences, 81(4), 134.
[13]. Kenneth, S. O., & Edirin, A. (2012). Determination of aquifer properties and groundwater vulnerability mapping using geoelectric method in Yenagoa City and its environs in Bayelsa State, South South Nigeria. Journal of Water Resource and Protection, 2012.
[14]. Bello, H. I., Alhassan, U. D., Salako, K. A., Rafiu, A. A., Adetona, A. A., & Shehu, J. (2019). Geoelectrical investigation of groundwater potential, at Nigerian Union of Teachers Housing estate, Paggo, Minna, Nigeria. Applied Water Science, 9, 1-12.
[15]. Kalinski, R. J., Kelly, W. E., & Bogardi, I. (1993). Combined use of geoelectric sounding and profiling to quantify aquifer protection properties. Groundwater, 31(4), 538-544.
[16]. Bery, A. A., Saad, R., Mohamad, E. T., Jinmin, M., Azwin, I. N., Tan, N. A., & Nordiana, M. M. (2012). Electrical resistivity and induced polarization data correlation with conductivity for iron ore exploration. The Electronic Journal of Geotechnical Engineering, 17, 3223-3233.
[17]. Kepic, A., & Javadipour, S. (2015). Resistivity and Induction polarization technique for mapping hematite rich areas in Iran. ASEG Extended Abstracts, 2015(1), 1-4.
[18]. Shin, Y., Shin, S., Cho, S. J., & Son, J. S. (2021). Application of 3D Electrical Resistivity Tomography in the Yeoncheon Titanomagnetite Deposit, South Korea. Minerals, 11(6), 563.
[19]. Hinojosa, H. R., Kirmizakis, P., & Soupios, P. (2022). Historic underground silver mine workings detection using 2D electrical resistivity imaging (Durango, Mexico). Minerals, 12(4), 491.
[20]. Olenchenko, V. V., Bortnikova, S. B., & Devyatova, A.Yu. (2023). Application of electrical prospecting methods for technogenic bodies (stored wastes of the mining industry) studies: a review. Russian Journal of Geophysical Technologies, 4, 23-40.
[21]. Dimech, A., Cheng, L., Chouteau, M., Chambers, J., Uhlemann, S., Wilkinson, P., Meldrum, P., Mary, B., Fabien-Ouellet, G., & Isabelle, A. (2022). A review on applications of time-lapse electrical resistivity tomography over the last 30 years: perspectives for mining waste monitoring. Surveys in Geophysics, 43(6), 1699-1759.
[22]. Shokri, B. J., Ramazi, H., Ardejani, F. D., & Moradzadeh, A. (2014). Integrated time-lapse geoelectrical-geochemical investigation at a reactive coal washing waste pile in Northeastern Iran. Mine Water and the Environment, 33(3), 256.
[23]. Shafaei, F., Ramazi, H., Shokri, B. J., & Ardejani, F. D. (2016). Detecting the source of contaminant zones down-gradient of the alborz Sharghi coal washing plant using geo-electrical methods, northeastern Iran. Mine Water and the Environment, 35(3), 381.
[24]. Jodeiri Shokri, B., Doulati Ardejani, F., & Moradzadeh, A. (2016). Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques—A case study, NE Iran. Environmental Earth Sciences, 75, 1-13.
[25]. Shokri, B. J., Ardejani, F. D., Ramazi, H., & Moradzadeh, A. (2016). Predicting pyrite oxidation and multi-component reactive transport processes from an abandoned coal waste pile by comparing 2D numerical modeling and 3D geo-electrical inversion. International Journal of Coal Geology, 164, 13-24.
[26]. Jodeiri Shokri, B., Shafaei, F., Doulati Ardejani, F., Mirzaghorbanali, A., & Entezam, S. (2023). Use of time-lapse 2D and 3D geoelectrical inverse models for monitoring acid mine drainage-a case study. Soil and Sediment Contamination: An International Journal, 32(4), 376-399.
[27]. Arjwech, R., & Everett, M. E. (2015). Application of 2D electrical resistivity tomography to engineering projects: Three case studies. Songklanakarin Journal of Science & Technology, 37(6).
[28]. Amini, A., & Ramazi, H. (2016). Application of electrical resistivity imaging for engineering site investigation. A case study on prospective hospital site, Varamin, Iran. Acta Geophysica, 64, 2200-2213.
[29]. Akingboye, A. S., & Osazuwa, I. B. (2021). Subsurface geological, hydrogeophysical and engineering characterization of Etioro-Akoko, southwestern Nigeria, using electrical resistivity tomography. NRIAG Journal of Astronomy and Geophysics, 10(1), 43-57.
[30]. Kumar, D., Thiagarajan, S., & Rai, S. N. (2011). Deciphering geothermal resources in Deccan Trap region using electrical resistivity tomography technique. Journal of the Geological Society of India, 78, 541-548.
[31]. Kana, J. D., Djongyang, N., Raïdandi, D., Nouck, P. N., & Dadjé, A. (2015). A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 44, 87-95.
[32]. Rizzo, E., Giampaolo, V., Capozzoli, L., De Martino, G., Romano, G., Santilano, A., & Manzella, A. (2022). 3D deep geoelectrical exploration in the Larderello geothermal sites (Italy). Physics of the Earth and Planetary Interiors, 329, 106906.
[33]. Passaro, S. (2010). Marine electrical resistivity tomography for shipwreck detection in very shallow water: a case study from Agropoli (Salerno, southern Italy). Journal of Archaeological Science, 37(8), 1989-1998.
[34]. Zheng, W., Li, X., Lam, N., Wang, X., Liu, S., Yu, X., Sun, Z., & Yao, J. (2013). Applications of integrated geophysical method in archaeological surveys of the ancient Shu ruins. Journal of archaeological science, 40(1), 166-75.
[35]. Simyrdanis, K., Papadopoulos, N., & Cantoro, G. (2016). Shallow off-shore archaeological prospection with 3-D electrical resistivity tomography: The case of Olous (modern Elounda), Greece. Remote Sensing, 8(11), 897.
[36]. Gaber, A., Gemail, K. S., Kamel, A., Atia, H. M., & Ibrahim, A. (2021). Integration of 2D/3D ground penetrating radar and electrical resistivity tomography surveys as enhanced imaging of archaeological ruins: A case study in San El‐Hager (Tanis) site, northeastern Nile Delta, Egypt. Archaeological Prospection, 28(2), 251-267.
[37]. Tye, A. M., Kessler, H., Ambrose, K., Williams, J. D., Tragheim, D., Scheib, A., Raines, M., & Kuras, O. (2011). Using integrated near‐surface geophysical surveys to aid mapping and interpretation of geology in an alluvial landscape within a 3D soil‐geology framework. Near Surface Geophysics, 9(1), 15-31.
[38]. Rucker, D. F., Noonan, G. E., & Greenwood, W. J. (2011). Electrical resistivity in support of geological mapping along the Panama Canal. Engineering Geology, 117(1-2), 121-133.
[39]. Gouet, D. H., Meying, A., Ekoro Nkoungou, H. L., Assembe, S. P., Njandjock Nouck, P., & Ndougsa Mbarga, T. (2020). Typology of sounding curves and lithological 1D models of mineral prospecting and groundwater survey within crystalline basement rocks in the East of Cameroon (Central Africa) using electrical resistivity method and Koefoed computation method. International journal of Geophysics, 2020, 1-23.
[40]. Junaid, M., Abdullah, R. A., Sa’ari, R., Ali, W., Rehman, H., Shah, K. S., & Sari, M. (2022). Water-saturated zone recognition using integrated 2D electrical resistivity tomography, borehole, and aerial photogrammetry in granite deposit, Malaysia. Arabian Journal of Geosciences, 15(14), 1301.
[41]. Chambers, J. E., Meldrum, P. I., Wilkinson, P. B., Ward, W., Jackson, C., Matthews, B., Joel, P., Kuras, O., Bai, L., Uhlemann, S., & Gunn, D. (2015). Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193, 412-420.
[42]. Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105-1122.
[43]. Subba Rao, N. (2006). Groundwater potential index in a crystalline terrain using remote sensing data. Environmental geology, 50, 1067-1076.
[44]. Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223-234.
[45]. Andualem, T. G., & Demeke, G. G. (2019). Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 24, 100610.
[46]. Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1), 65-80.
[47]. Adeyemo, I. A., Omosuyi, G. O., Ojo, B. T., & Adekunle, A. (2017). Groundwater potential evaluation in a typical Basement Complex environment using GRT index—a case study of Ipinsa-Okeodu area, near Akure, Nigeria. Journal of Geoscience and Environment Protection, 5(03), 240.
[48]. Oni, T. E., Omosuyi, G. O., & Akinlalu, A. A. (2017). Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria. NRIAG Journal of Astronomy and Geophysics, 6(2), 452-458.
[49]. Shailaja, G., Gupta, G., Suneetha, N., & Laxminarayana, M. (2019). Assessment of aquifer zones and its protection via second-order geoelectric indices in parts of drought-prone region of Deccan Volcanic Province, Maharashtra, India. Journal of Earth System Science, 128(4), 78.
[50]. Singh, S., & Tripura, J. (2022). Pumping test analysis for assessment of hydraulic parameters and aquifer system formation in hilly terrain. Water Practice & Technology, 17(1), 492-501.
[51]. CGWB, (2022). Groundwater water year book, Himachal Pradesh. http://cgwb.gov.in/Regions/NHR/Reports/GWY%20BOOK%20HIMACHAL%20PRADESH%202021-2022.pdf. Accessed 02 May 2023.
[52]. CGWB, (2013). Ground water information booklet Hamirpur district, Himachal Pradesh. http://cgwb.gov.in/District_Profile/HP/Hamirpur.pdf. Accessed 18 July 2022.
[53]. Vasantrao, B. M., Bhaskarrao, P. J., Mukund, B. A., Baburao, G. R., & Narayan, P. S. (2017). Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater investigation: a case study from Dhule district (M.S.), India. Applied Water Science, 7, 4321–4340.
[54]. Suriyapor, P. (2020). 1-D Vertical Electrical Sounding (VES) Inversion with a lateral constraint (Doctoral dissertation, Department of Physics Faculty of Science, Mahidol University).
[55]. Okpoli, C. C. (2013). Sensitivity and resolution capacity of electrode configurations. International Journal of Geophysics, 2013.
[56]. Merrick, N. P. (1997). A new resolution index for resistivity electrode arrays. Exploration Geophysics, 28(2), 106-109.
[57]. Eastern Research Group, Inc, & Center for Environmental Research Information (US). (1993). Use of airborne, surface, and borehole geophysical techniques at contaminated sites: A reference guide. US Environmental Protection Agency.
[58]. Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil & Tillage Research, 83, 173-193.
[59]. Orellana, E., & Mooney, H. M. (1966). Master tables and curves for vertical electrical sounding over layered structures. Interciencia, Madrid, 159 pp.
[60]. Bobachev, A. (2003). Resistivity sounding interpretation IPI2WIN version 3.0. 1. Moscow State University, Moscow.
[61]. Zohdy, A. A., Eaton, G. P., & Mabey, D. R. (1974). Application of surface geophysics to ground-water investigations (No. 02-D1). US Dept. of the Interior, Geological Survey: US Govt. Print. Off.
[62]. Tahama, K., Baride, A., Gupta, G., Erram, V. C., & Baride, M. V. (2022). Spatial variation of sub-surface heterogenieties within the dyke swarm of Nandurbar region, Maharashtra, India, for groundwater exploration using Inverse Distance Weighted technique. HydroResearch, 5, 1-12.
[63]. Rahman, H. (2015). Spatial Distribution Analysis and Mapping of Groundwater Quality Parameters for the Sylhet City Corporation (SCC) Area Using GIS. Hydrology, 3(1), 1.
[64]. Farid, H. U., Bakhsh, A., Ahmad, N., Ahmad, A., & Mahmood-Khan, Z. (2016). Delineating site-specific management zones for precision agriculture. The Journal of Agricultural Science, 154(2), 273-286.
[65]. Bakhsh, A., Kanwar, R. S., & Malone, R. W. (2007). Role of landscape and hydrologic attributes in developing and interpreting yield clusters. Geoderma, 140(3), 235-246.
[66]. Tran, B. Q., & Nguyen, T. T. (2008). Assessment of the influence of interpolation techniques on the accuracy of digital elevation model. VNU Journal of Science Earth Sciences, 24, 176.
[67]. Ojo, E. O., Adelowo, A., Abdulkarim, H. M., & Dauda, A. K. (2015). A Probe into the Corrosivity Level and Aquifer Protective Capacity of the Main Campus of the University of Abuja, Nigeria: Using Resistivity Method. Physics Journal, 1(2), 172.
[68]. Oladapo, M. I., Mohammed, M. Z., Adeoye, O. O., & Adetola, B. A. (2004). Geo-electrical investigation at Ondo State housing corporation estate, Ijapo, Akure, southwestern Nigeria. Journal of Mining Geology, 40(1), 41–48.
[69]. Daniel, A., Louis, O., Emmanuel, C., & Kingsley, O. (2015). Delineation of potential groundwater zones using geoelectrical sounding data at Awka in Anambra State, South-eastern Nigeria. European Journal of Biotechnology and Bioscience, 3(1), 01.
[70]. Emberga, T. T., Opara, A. I., Onyekuru, S. O., Omenikolo, A. I., Nkpuma, O. R., & Eluwa Nchedo, E. N. (2019). Regional hydrogeophysical study of the groundwater potentials of the Imo River Basin Southeastern Nigeria using surfcial resistivity data. Australian Journal of Basic and Applied Sciences, 13(8), 76–94.
[71]. Niwas, S., & Singhal, D. C. (1985). Aquifer transmissivity of porous media from resistivity data. Journal of Hydrology, 82(1-2), 143-153.
[72]. Niwas, S., & Singhal, D. C. (1981). Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. Journal of hydrology, 50, 393-399.
[73]. Nwachukwu, S., Bello, R., & Balogun, A. O. (2019). Evaluation of groundwater potentials of Orogun, South–South part of Nigeria using electrical resistivity method. Applied Water Science, 9(8), 184.
[74]. Oladapo, M. I., & Akintorinwa, O. J. (2007). Hydrogeophysical study of ogbese south western Nigeria. Global journal of pure and applied sciences, 13(1), 55-61.
[75]. Henriet, J. P. (1976). Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophysical prospecting, 24(2), 344-353.
[76]. Youssef, M. A. S. (2020). Geoelectrical analysis for evaluating the aquifer hydraulic characteristics in Ain El-Soukhna area, West Gulf of Suez, Egypt. NRIAG Journal of Astronomy and Geophysics, 9(1), 85-98. | ||
آمار تعداد مشاهده مقاله: 327 تعداد دریافت فایل اصل مقاله: 571 |