DEDEKIND-MACNEILLE COMPLETION OF THE ROUGH SETS SYSTEM AS PASTING OF ROUGH APPROXIMATION LATTICES | ||
Journal of Algebraic Systems | ||
دوره 13، شماره 3، بهمن 2025، صفحه 137-155 اصل مقاله (400.93 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2024.13825.1775 | ||
نویسنده | ||
Umadevi Dwaragan* | ||
Department of Engineering Mathematics, HKBK College of Engineering, Bengaluru, Karnataka-560045, India. | ||
چکیده | ||
The pattern of embedding of rough approximation lattices defined by a reflexive relation in its Dedekind-MacNeille completion of rough sets system is taken up for study in this work. The reflexive relation R for which the Dedekind-MacNeille completion of rough sets system defined by R is the pasting of its rough approximation lattices is characterized. Some properties of the Dedekind-MacNeille completion of rough sets system defined by a reflexive relation R are also discussed. | ||
کلیدواژهها | ||
Rough Sets System؛ Rough Approximations؛ Join-dense؛ Pasting of lattices | ||
مراجع | ||
1. M. R. Celentani and A. Leone, Gluing of posets and lattices of subgroups, Appl. Math. Sci., 8(133) (2014), 6699–6707.
2. S. D. Comer, On connections between information systems, rough sets, and algebraic logic, In: Algebraic methods in logic and in computer science, Banach Center Publications, 28 (1993), 117–124.
3. B. Davey and H. A. Priestley, Introduction to lattices and order, Second Edition, Cambridge University Press, Cambridge, 2002.
4. E. Fried and G. Gratzer, Pasting infinite lattices, J. Austral. Math. Soc. (Series A), 47 (1989), 1–21.
5. G. Gratzer, General lattice theory, Second edition, Birkhauser verlag, Boston, 1998.
6. G. Gratzer FRSC, The Amalgamation property in lattice theory, C.R. Math. Rep. Acad. Sci. Canada, IX(6) (1987), 273–289.
7. T. B. Iwinski, Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math., 35 (1987), 673–683.
8. J. Järvinen, Lattice theory for rough sets, Transactions on Rough Sets, VI (2007), 400– 498.
9. J. Järvinen, The ordered set of rough sets, In: Tsumoto, S., Slowinski, R., Komorowski, J., Grzymala-Busse J.W.,(eds.), Proc. Fourth International Conference on Rough Sets and Current Trends in Computing (RSCTC 2004), LNAI 3066, Springer-Verlag, Heidelberg (2004), 49–58.
10. J. Järvinen and S. Radeleczki, Rough sets determined by tolerances, Internat. J. Approx. Reason., 55 (2014), 1419–1438.
11. J. Järvinen, S. Radeleczki and L. Veres, Rough sets determined by quasi orders, Order, 26(4) (2009), 337–355.
12. E. K. R. Nagarajan and D. Umadevi, Algebra of rough sets based on quasi-order, Fund. Inform., 126(1-3) (2013), 83–101.
13. E. Orlowska, Introduction: What you always wanted to know about rough sets, In: Ewa Orlowska (Ed.): Incomplete Information: Rough Set Analysis, Physica-Verlag, Heidelberg, (1998), 1–20.
14. P. Pagliani and M. K. Chakraborty, A geometry of approximation rough set theory: Logic, algebra, and topology of conceptual patterns, Springer, 2008.
15. Z. Pawlak, Rough sets, Int. J. Comp. Inform. Sci., 11 (1982), 341–356.
16. J. Pomykala and J. A. Pomykala, The Stone algebra of rough sets, Bull. Polish Acad. Sci. Math., 36 (1988), 495–508.
17. D. Umadevi, A new perspective of viewing the lattice structure of rough sets system defined by quasi-order, SUT J. Math., 60(2) (2024), 65–77.
18. D. Umadevi, On the completion of rough sets system determined by arbitrary binary relations, Fund. Inform., 137 (2015), 1–12.
19. W. Zhu, Generalized rough sets based on relations, Inform. Sci., 177(22) (2007), 4997– 5011 | ||
آمار تعداد مشاهده مقاله: 328 تعداد دریافت فایل اصل مقاله: 90 |