Optimizing Long-Term Production Scheduling in Open Pit Mining under Commodity Price Uncertainty: A Two-Stage Stochastic Programming Approach | ||
Journal of Mining and Environment | ||
مقاله 18، دوره 15، شماره 4، دی 2024، صفحه 1491-1508 اصل مقاله (4.2 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.13814.2576 | ||
نویسندگان | ||
Elham Lotfi1؛ Javad Gholamnejad* 1؛ Mehdi Najafi1؛ Mohammad Sadegh Zamani2 | ||
1Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran | ||
2Department. of Mathematical Sciences, Yazd University, Yazd, Iran | ||
چکیده | ||
In the context of open pit mining operations, long-term production scheduling faces significant challenges due to inherent uncertainties, particularly in commodity prices. Traditional mathematical models often adopt a single-point estimation strategy for commodity price, leading to suboptimal mine plans and missed production targets. The simultaneous effect of commodity price uncertainty on the cut-off grade and long-term production scheduling is less considered. This paper introduces a novel model for optimizing open pit mine long-term production scheduling under commodity price uncertainty considering a dynamic cut-off grade strategy, based on a two-stage Stochastic Production Programming (SPP) framework. The presented model seeks to identify optimal mining block sequences, maximizing total discounted cash flow while penalizing deviations from production targets. To illustrate the model's efficiency, it was implemented in a copper mine. First, the Geometric Brownian Motion (GBM) model is used to quantify the future commodity price. Then, both deterministic and SPP models were solved using GAMS software. The results showed that the practical NPV obtained from the SPP model is approximately 3% higher than the DPP model, while all constraints are satisfied. | ||
کلیدواژهها | ||
Long-term production planning؛ Open-pit mining؛ Metal price uncertainty؛ dynamic cut-off grades؛ two-stage stochastic programming | ||
مراجع | ||
[1]. Abdel Sabour, A., Dimitrakopoulos, R. (2011). Incorporating geological and Mine, market uncertainties and operational flexibility into open-pit mine design. Journal of Mining Science, 47(2), :191–201.
[2]. Abdel Sabour, S. A., Dimitrakopoulos, R. G., & Kumral, M. (2008). Mine design selection under uncertainty. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 117(2), 53–64. https://doi.org/10.1179/174328608X343065.
[3]. Alipour, A, Khodaiari, A. A., Jafari, A., & Tavakkoli-Moghaddam, R. (2017). Robust production scheduling in open-pit mining under uncertainty: a box counterpart approach. Journal of Mining and Environment, 8(2), 255–267. https://doi.org/10.22044/jme.2017.849.
[4]. Alipour, Aref, Khodaiari, A. A., Jafari, A., & Tavakkoli-Moghaddam, R. (2020). Robustness price of open-pit mine production scheduling. International Journal of Mining and Geo-Engineering, 54(2), 117–122. https://doi.org/10.22059/IJMGE.2019.267417.594762.
[5]. Amponsah, S. Y., Takouda, P. M., & Ben-Awuah, E. (2023). A Multiple Objective Genetic Algorithm Approach for Stochastic Open Pit Production Scheduling Optimisation. International Journal of Mining, Reclamation and Environment, 37(6), 460–487. https://doi.org/10.1080/17480930.2023.2196918.
[6]. Armstrong, M., Lagos, T., Emery, X., Homem-de-Mello, T., Lagos, G., & Sauré, D. (2021). Adaptive open-pit mining planning under geological uncertainty. Resources Policy, 72, 102086. https://doi.org/https://doi.org/10.1016/j.resourpol.2021.102086.
[7]. Asad, M. W. A., & Dimitrakopoulos, R. (2013). Implementing a parametric maximum flow algorithm for optimal open pit mine design under uncertain supply and demand. Journal of the Operational Research Society, 64(2), 185–197. https://doi.org/10.1057/jors.2012.26.
[8]. Bakhtavar, E., Jafarpour, A., & Yousefi, S. (2017). Optimal production strategy of bimetallic deposits under technical and economic uncertainties using stochastic chance-constrained programming. Journal of Mining and Environment, 8(3), 475–485. https://doi.org/10.22044/jme.2017.934.
[9]. Bienstock, D., & Zuckerberg, M. (2010). Solving LP relaxations of large-scale precedence constrained problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6080 LNCS, 1–14. https://doi.org/10.1007/978-3-642-13036-6_1.
[10]. Bley, A., Boland, N., Fricke, C., & Froyland, G. (2010). A strengthened formulation and cutting planes for the open pit mine production scheduling problem. Computers & Operations Research, 37(9), 1641–1647. https://doi.org/https://doi.org/10.1016/j.cor.2009.12.008.
[11]. Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., & Rubio, E. (2012). A New Algorithm for the Open-Pit Mine Production Scheduling Problem. Operations Research, 60(3), 517–528. http://www.jstor.org/stable/23260150.
[12]. Consuegra, F. R. A., & Dimitrakopoulos, R. (2010). Algorithmic approach to pushback design based on stochastic programming: Method, application and comparisons. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 119(2), 88–101. https://doi.org/10.1179/037178410X12780655704761.
[13]. Del Castillo, F., & Dimitrakopoulos, R. (2014). Joint effect of commodity price and geological uncertainty over the life of mine and ultimate pit limit. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 123(4), 207–219. https://doi.org/10.1179/1743286314Y.0000000069.
[14]. Dimitrakopoulos, R. G., & Abdel Sabour, S. A. (2007). Evaluating mine plans under uncertainty: Can the real options make a difference? Resources Policy, 32(3), 116–125. https://doi.org/10.1016/j.resourpol.2007.06.003.
[15]. Dimitrakopoulos, R., & Lamghari, A. (2022). Simultaneous stochastic optimization of mining complexes - mineral value chains: an overview of concepts, examples and comparisons. International Journal of Mining, Reclamation and Environment, 36(6), 443–460. https://doi.org/10.1080/17480930.2022.2065730.
[16]. Eduardo S. Schwartz. (1997). stochastic behaviour of commodity prices.pdf. In The Journal of Finance (Vol. 52, Issue 3, p. 51). https://static.twentyoverten.com/ 593e8a9e7299b471eaecf644/ H1tGPLaXM/The-Stochastic-Behavior-of-Commodity-Prices-Implications-for-Valuation-and-Hedging.pdf.
[17]. Eivazy, H., & Askari-Nasab, H. (2012a). A hierarchical open-pit mine production scheduling optimisation model Hesameddin Eivazy and Hooman Askari-Nasab *. Int. J. Mining and Mineral Engineering, 2.
[18]. Eivazy, H., & Askari-Nasab, H. (2012b). A mixed integer linear programming model for short-term open pit mine production scheduling. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 121(2), 97–108. https://doi.org/10.1179/1743286312Y.0000000006.
[19]. Fathollahzadeh, K., Waqar, M., Asad, A., & Mardaneh, E. (2021). Review of Solution Methodologies for Open Pit Mine Production Scheduling Problem. International Journal of Mining, Reclamation and Environment, 00(00), 1–36. https://doi.org/10.1080/17480930.2021.1888395.
[20]. Franco-Sepulveda, G., Campuzano, C., & Pineda, C. (2017). NPV risk simulation of an open pit gold mine project under the O’Hara cost model by using GAs. International Journal of Mining Science and Technology, 27(3), 557–565. https://doi.org/10.1016/j.ijmst.2017.03.004.
[21]. Gilani, S.-O., Sattarvand, J., Hajihassani, M., & Abdullah, S. S. (2020). A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty. Resources Policy, 68, 101738. https://doi.org/https://doi.org/10.1016/j.resourpol.2020.101738.
[22]. https://inflationdata.com/Inflation/Consumer_Price_Index/HistoricalCPI.aspx?reloaded=true. (n.d.).
[23]. INDEXMUNDI. 2018. Copper, grade A cathode, LME spot price. World Bank. http://www.indexmundi.com/commodities/?commodity= copper&months=300. (n.d.).
[24]. Jelvez, E., Ortiz, J., Varela, N. M., Askari-Nasab, H., & Nelis, G. (2023). A Multi-Stage Methodology for Long-Term Open-Pit Mine Production Planning under Ore Grade Uncertainty. Mathematics, 11(18). https://doi.org/10.3390/math11183907.
[25]. Khan, A., Asad, M. W. A., & Topal, E. (2023). A heuristic method for production scheduling of an open pit mining operation. International Journal of Mining, Reclamation and Environment, 1–13. https://doi.org/10.1080/17480930.2023.2281201.
[26]. Kumral, M. (2011). Incorporating geo-metallurgical information into mine production scheduling. Journal of the Operational Research Society, 62(1), 60–68. https://doi.org/10.1057/jors.2009.174.
[27]. Kumral, Mustafa. (2010). Robust stochastic mine production scheduling. Engineering Optimization, 42(6), 567–579. https://doi.org/10.1080/03052150903353336.
[28]. Kumral, Mustafa, & Sari, Y. A. (2017a). An application of possibilistic programming to production sequencing of mining parcels. International Journal of Management Science and Engineering Management, 12(2), 79–88. https://doi.org/10.1080/17509653.2016.1159147.
[29]. Kumral, Mustafa, & Sari, Y. A. (2017b). Simulation-based mine extraction sequencing with chance constrained risk tolerance. Simulation, 93(6), 527–539. https://doi.org/10.1177/0037549717692415.
[30]. Lambert, W. B., & Newman, A. M. (2014). Tailored Lagrangian Relaxation for the open pit block sequencing problem. Annals of Operations Research, 222(1), 419–438. https://doi.org/10.1007/s10479-012-1287-y.
[31]. Lamghari, A., & Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty. European Journal of Operational Research, 222(3), 642–652. https://doi.org/10.1016/j.ejor.2012.05.029.
[32]. Laroche-Boisvert, M., & Dimitrakopoulos, R. (2021). An application of simultaneous stochastic optimization at a large open-pit gold mining complex under supply uncertainty. Minerals, 11(2), 1–16. https://doi.org/10.3390/min11020172.
[33]. Liu, G., Guo, W., Fu, E., Yang, C., & Li, J. (2023). Dynamic optimization of open-pit coal mine production scheduling based on ARIMA and fuzzy structured element. Frontiers in Earth Science, 10(January), 1–16. https://doi.org/10.3389/feart.2022.1040464.
[34]. Lotfian, R., Gholamnejad, J., & Mirzaeian Lardkeyvan, Y. (2021). Effective solution of the long-term open pit production planning problem using block clustering. Engineering Optimization, 53(7), 1119–1134. https://doi.org/10.1080/0305215X.2020.1771703.
[35]. Meagher, C., Sabour, S. a A., & Dimitrakopoulos, R. (2009). Pushback Design of Open Pit Mines Under Geological and Market Uncertainties. In Orebody Modelling and Strategic Mine Planning (Vol. 17, Issue March, pp. 16–18).
[36]. Mohammadi, S., Kakaie, R., Ataei, M., & Pourzamani, E. (2017). Determination of the optimum cut-off grades and production scheduling in multi-product open pit mines using imperialist competitive algorithm (ICA). Resources Policy, 51(November 2016), 39–48. https://doi.org/10.1016/j.resourpol.2016.11.005.
[37]. Mokhtarian Asl, M., & Sattarvand, J. (2016). Commodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method. Journal of Mining and Environment, 7(2), 215–227. https://doi.org/10.22044/jme.2016.541.
[38]. Mokhtarian Asl, M., & Sattarvand, J. (2018). Integration of commodity price uncertainty in long-term open pit mine production planning by using an imperialist competitive algorithm . In Journal of the Southern African Institute of Mining and Metallurgy (Vol. 118, pp. 165–172). scieloza .
[39]. Moreno, E., Espinoza, D., & Goycoolea, M. (2010). Large-scale multi-period precedence constrained knapsack problem: A mining application. Electronic Notes in Discrete Mathematics, 36, 407–414. https://doi.org/https://doi.org/10.1016/j.endm.2010.05.052.
[40]. Osanloo, M., Gholamnejad, J., & Karimi, B. (2008). Long-term open pit mine production planning: A review of models and algorithms. International Journal of Mining, Reclamation and Environment, 22(1), 3–35. https://doi.org/10.1080/17480930601118947.
[41]. Rahmanpour, M., & Osanloo, M. (2016). Determination of value at risk for long-term production planning in open pit mines in the presence of price uncertainty. Journal of the Southern African Institute of Mining and Metallurgy, 116, 229–236. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532016000300007&nrm=iso.
[42]. Ramazan, S. (2007). The new Fundamental Tree Algorithm for production scheduling of open pit mines. European Journal of Operational Research, 177(2), 1153–1166. https://doi.org/https://doi.org/10.1016/j.ejor.2005.12.035.
[43]. Ramazan, S., & Dimitrakopoulos, R. (2013). Production scheduling with uncertain supply: A new solution to the open pit mining problem. Optimization and Engineering, 14(2), 361–380. https://doi.org/10.1007/s11081-012-9186-2.
[44]. Rimélé, A., Dimitrakopoulos, R., & Gamache, M. (2020). A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty. Resources Policy, 65, 101570. https://doi.org/https://doi.org/10.1016/j.resourpol.2019.101570.
[45]. Sabour, S. A. and Wood, G. (2009). Modelling financial risk in open pit Decision-making, mine projects: implications for strategic. J. South. Afr. Inst. Min. Metall., 109, 169–175. http://www.scielo.org.za/scielo.php?script=sci_abstract&pid=S2225-62532009000300004&lng=en&nrm=iso.
[46]. Shenavar, M., Ataee-Pour, M., & Rahmanpour, M. (2021). Evaluation of Underground Mineable Reserve in Presence of Grade and Commodity Price Uncertainties. Journal of Mining and Environment, 12(2), 385–396. https://doi.org/10.22044/jme.2021.10301.1974.
[47]. Tabesh, M., & Askari-Nasab, H. (2011). Two-stage clustering algorithm for block aggregation in open pit mines. Mining Technology, 120(3), 158–169. https://doi.org/10.1179/1743286311Y.0000000009.
[48]. Tahernejad, M., Ataei, M., & Khalokakaie, R. (2018). A practical approach to open-pit mine planning under price uncertainty using information gap decision theory. Journal of Mining and Environment, 9(2), 527–537. https://doi.org/10.22044/jme.2017.6220.1439.
[49]. Tahernejad, M. M., Khalo Kakaei, R., & Ataei, M. (2018). Analyzing the effect of ore grade uncertainty in open pit mine planning; A case study of Rezvan iron mine, Iran. International Journal of Mining and Geo-Engineering, 52(1), 53–60. https://ijmge.ut.ac.ir/article_66251.html.
[50]. Tolouei, K., Moosavi, E., Bangian Tabrizi, A. H., Afzal, P., & Aghajani Bazzazi, A. (2020). A comprehensive study of several meta-heuristic algorithms for open-pit mine production scheduling problem considering grade uncertainty. Journal of Mining and Environment, 11(3), 721–736.
[51]. Tolouei, K., Moosavi, E., Tabrizi, A. H. B., Afzal, P., & Bazzazi, A. A. (2021). An optimisation approach for uncertainty-based long-term production scheduling in open-pit mines using meta-heuristic algorithms. International Journal of Mining, Reclamation and Environment, 35(2), 115–140.
[52]. Zeng, L., Qiang, S., Kozan, E., Corry, P., & Masoud, M. (2021). A comprehensive interdisciplinary review of mine supply chain management. Resources Policy, 74(January), 102274. https://doi.org/10.1016/j.resourpol.2021.102274. | ||
آمار تعداد مشاهده مقاله: 181 تعداد دریافت فایل اصل مقاله: 371 |