Artificial Intelligence Tool for Prediction of Mine Tailings Dam Slope Stability | ||
Journal of Mining and Environment | ||
مقاله 8، دوره 16، شماره 1، فروردین 2025، صفحه 127-142 اصل مقاله (4.87 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.14602.2754 | ||
نویسندگان | ||
Kapoor Chand؛ Ved Kumar؛ Priyanshu Raj؛ Nikita Sharma؛ Amit Kumar Mankar؛ Radhakanta Koner* | ||
Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India | ||
چکیده | ||
Failure of tailings dams is a major issue in the mining industry as it critically impacts the environment and life. A major cause of the failure of tailings dams is the unplanned depositing of tailings and the increase in saturation due to rainfall events. This study using numerical modelling and artificial intelligence techniques (like MLR, SVR, DT, RF, and XGB) aims to predict the slope stability of tailings dams to avoid failure. The stability of tailings dams is analysed using the finite difference method (FDM), which computes the factor of safety (FoS) using the shear strength reduction (SSR) technique. This investigation mainly focuses on the geotechnical and geometric parameters of the tailings dam, such as density, cohesion, friction angle, saturation, embankment height, slope angle and haul road width. Results of numerical modelling have been used for developing ML models and predicting slope stability. The efficiency of ML models was analysed based on the R2 and root mean square error (RMSE), mean squared errors (MSE), and mean absolute error (MAE). The XGB algorithm proved to be the most effective as it gave the highest accuracy and lowest RMSE value compared to other ML models. AI tool was developed based on the ML model results for dam slope stability prediction. The developed AI tool will help understand the role of saturation and geometry parameters in embankment stability at the initial level of investigation. | ||
کلیدواژهها | ||
Tailings dam stability؛ Numerical Modelling؛ Machine Learning؛ AI tool | ||
مراجع | ||
[1]. Wang, K., Yang, P., Yu, G., Yang, C., & Zhu, L. (2020). 3D numerical modelling of tailings dam breach run out flow over complex terrain: A multidisciplinary procedure. Water, 12(9), 2538.
[2]. Azam, S., & Li, Q. (2010). Tailings dam failures: a review of the last one hundred years. Geotechnical news, 28(4), 50-54.
[3]. Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied geochemistry, 51, 229-245.
[4]. Islam, K., & Murakami, S. (2021). Global-scale impact analysis of mine tailings dam failures: 1915–2020. Global Environmental Change, 70, 102361.
[5]. Zhang, C., Chai, J., Cao, J., Xu, Z., Qin, Y., & Lv, Z. (2020). Numerical simulation of seepage and stability of tailings dams: A case study in Lixi, China. Water, 12(3), 742.
[6]. Xu, B., & Wang, Y. (2015). Stability analysis of the Lingshan gold mine tailings dam under conditions of a raised dam height. Bulletin of Engineering Geology and the Environment, 74, 151-161.
[7]. Ozcan, N. T., Ulusay, R., & Isik, N. S. (2013). A study on geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey). Environmental Earth Sciences, 69, 1871-1890.
[8]. Alsharedah, Y. A., El Naggar, M. H., & Ahmed, A. (2023). Improving Tailings Dam Safety via Soil Treatment. Sustainability, 15(21), 15276.
[9]. Ledesma, O., Sfriso, A., & Manzanal, D. (2022). Procedure for assessing the liquefaction vulnerability of tailings dams. Computers and Geotechnics, 144, 104632.
[10]. Van Niekerk, H. J., & Viljoen, M. J. (2005). Causes and consequences of the Merriespruit and other tailings‐dam failures. Land degradation & development, 16(2), 201-212.
[11]. Sadrekarimi, A., & Riveros, G. A. (2020). Static liquefaction analysis of the Fundão dam failure. Geotechnical and Geological Engineering, 38, 6431-6446.
[12]. Mayne, P., & Sharp, J. (2021). Screening for flow liquefaction for tailings and natural soils by CPTU. In Proceedings of the 20th international conference on soil mechanics and geotechnical engineering (pp. 459-464).
[13]. Cambridge, M., & Shaw, D. (2019). Preliminary reflections on the failure of the Brumadinho tailings dam in January 2019. Dams and Reservoirs, 29(3), 113-123.
[14]. Sitharam, T. G., & Hegde, A. (2017). Stability analysis of rock-fill tailing dam: an Indian case study. International Journal of Geotechnical Engineering, 11(4), 332-342.
[15]. Pacheco, F., Hermosilla, G., Piña, O., Villavicencio, G., Allende-Cid, H., Palma, J., ... & Novoa, G. (2022). Generation of synthetic data for the analysis of the physical stability of tailing dams through artificial intelligence. Mathematics, 10(23), 4396.
[16]. Lyu, Z., Chai, J., Xu, Z., Qin, Y., & Cao, J. (2019). A comprehensive review on reasons for tailings dam failures based on case history. Advances in Civil Engineering, 2019(1), 4159306.
[17]. Chakraborty, D., & Choudhury, D. (2009). Investigation of the behavior of tailings earthen dam under seismic conditions. American Journal of Engineering and Applied Sciences, 2(3), 559-564.
[18]. Singh, R., Umrao, R. K., & Singh, T. N. (2017). Hill slope stability analysis using two and three dimensions analysis: A comparative study. Journal of the Geological Society of India, 89, 295-302.
[19]. Latha, G. M., & Garaga, A. (2010). Seismic stability analysis of a Himalayan rock slope. Rock Mechanics and Rock Engineering, 43, 831-843.
[20]. Rai, R., Kalita, S., Gupta, T., & K Shrivastva, B. (2012). Sensitivity analysis of internal dragline dump stability: finite element analysis. Geotechnical and Geological Engineering, 30, 1397-1404.
[21]. Koner, R. (2021). Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: A case study. Journal of Mining and Environment, 12(4), 907-927.
[22]. Chand, K., & Koner, R. (2024). Failure zone identification and slope stability analysis of mine dump based on realistic 3D numerical modeling. Geotechnical and Geological Engineering, 42(1), 543-560.
[23]. Koner, R., & Chakravarty, D. (2016). Numerical analysis of rainfall effects in external overburden dump. International Journal of Mining Science and Technology, 26(5), 825-831.
[24]. Lin, S., Zheng, H., Han, C., Han, B., & Li, W. (2021). Evaluation and prediction of slope stability using machine learning approaches. Frontiers of Structural and Civil Engineering, 15(4), 821-833.
[25]. Santos, A. E. M., Lana, M. S., & Pereira, T. M. (2022). Evaluation of machine learning methods for rock mass classification. Neural Computing and Applications, 34(6), 4633-4642.
[26]. Yilmaz, I., & Yuksek, A. G. (2008). An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mechanics and Rock Engineering, 41(5), 781.
[27]. Tabrizi, S. S., & Sancar, N. (2017). Prediction of Body Mass Index: A comparative study of multiple linear regression, ANN and ANFIS models. Procedia computer science, 120, 394-401.
[28]. Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. (2016). Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. International Journal of Sustainable Built Environment, 5(2), 355-369.
[29]. Erzin, Y., & Cetin, T. (2013). The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Computers & Geosciences, 51, 305-313.
[30]. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301-320.
[31]. Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in space research, 45(10), 1244-1256.
[32]. Moayedi, H., Tien Bui, D., Kalantar, B., & Kok Foong, L. (2019). Machine-learning-based classification approaches toward recognizing slope stability failure. Applied Sciences, 9(21), 4638.
[33]. Kheir, R. B., Greve, M. H., Abdallah, C., & Dalgaard, T. (2010). Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environmental Pollution, 158(2), 520-528.
[34]. Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical problems in Engineering, 2012(1), 974638.
[35]. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365.
[36]. Paudel, U., Oguchi, T., & Hayakawa, Y. (2016). Multi-resolution landslide susceptibility analysis using a DEM and random forest. International Journal of Geosciences, 7(5), 726-743.
[37]. Xie, H., Dong, J., Deng, Y., & Dai, Y. (2022). Prediction model of the slope angle of rocky slope stability based on random forest algorithm. Mathematical Problems in Engineering, 2022(1), 9441411.
[38]. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
[39]. Zhou, J., Li, X., & Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety science, 50(4), 629-644.
[40]. Piryonesi, S. M., & El-Diraby, T. E. (2020). Role of data analytics in infrastructure asset management: Overcoming data size and quality problems. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020022.
[41]. Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support vector regression machines. Advances in neural information processing systems, 9.
[42]. Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. Advances in neural information processing systems, 9.
[43]. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
[44]. Yahyaoui, N., Neji, M., Kallel, M., Wali, A., & Hajji, S. (2023). A comparative approach of ML algorithms to rank irrigation water quality: case of Oriental-Coast shallow aquifer in Cap-Bon, northeastern of Tunisia. Modeling Earth Systems and Environment, 9(3), 3733-3746.
[45]. Pedregosa, F. (2011). Scikit‐learn: Machine learning in python Fabian. Journal of machine learning research, 12, 2825.
[46]. Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967.
[47]. Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J., & Gifford, E. M. (2016). Extreme gradient boosting as a method for quantitative structure–activity relationships. Journal of chemical information and modeling, 56(12), 2353-2360.
[48]. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
[49]. Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S., & Mitri, H. S. (2019). Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118, 505-518.
[50]. Dehghan, S., Sattari, G. H., Chelgani, S. C., & Aliabadi, M. A. (2010). Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Mining Science and Technology (China), 20(1), 41-46.
[51]. Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications, 22, 1637-1643.
[52]. Ebrahimi, E., Monjezi, M., Khalesi, M. R., & Armaghani, D. J. (2016). Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment, 75, 27-36.
[53]. Akinwekomi, A. D., & Lawal, A. I. (2021). Neural network-based model for predicting particle size of AZ61 powder during high-energy mechanical milling. Neural Computing and Applications, 33, 17611-17619.
[54]. Aladejare, A. E., Ozoji, T., Lawal, A. I., & Zhang, Z. (2022). Soft computing-based models for predicting the characteristic impedance of igneous rock from their physico-mechanical properties. Rock Mechanics and Rock Engineering, 55(7), 4291-4304. | ||
آمار تعداد مشاهده مقاله: 386 تعداد دریافت فایل اصل مقاله: 204 |