ON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS | ||
Journal of Algebraic Systems | ||
مقاله 3، دوره 2، شماره 2، فروردین 2015، صفحه 109-124 اصل مقاله (296.26 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2015.360 | ||
نویسنده | ||
M. Habibi* | ||
Department of Mathematics, University of Tafresh, P.O.Box 39518-79611, Tafresh, Iran. | ||
چکیده | ||
Let $alpha$ be an automorphism of a ring $R$. The authors [On skew inverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1) (2012) 138-156] applied the concept of Armendariz rings to inverse skew Laurent series rings and introduced skew inverse Laurent-serieswise Armendariz rings. In this article, we study on a special type of these rings and introduce strongly Armendariz rings of inverse skew power series type. We determine the radicals of the inverse skew Laurent series ring $R((x^{-1};alpha))$, in terms of those of $R$. We also prove that several properties transfer between $R$ and the inverse skew Laurent series extension $R((x^{-1};alpha))$, in case $R$ is a strongly Armendariz ring of inverse skew power series type. | ||
کلیدواژهها | ||
Inverse skew power series extensions؛ Radical property؛ Semicommutative rings | ||
آمار تعداد مشاهده مقاله: 2,468 تعداد دریافت فایل اصل مقاله: 2,831 |