ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS | ||
Journal of Algebraic Systems | ||
مقاله 5، دوره 3، شماره 1، آذر 2015، صفحه 39-47 اصل مقاله (183.53 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2015.487 | ||
نویسنده | ||
M. Baziar* | ||
Department of Mathematics, University of Yasouj, P.O.Box 75914, Yasouj, Iran. | ||
چکیده | ||
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. We observe that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ is connected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with $Bbb{A}_*(M)neq S(M)setminus {0}$, $Bbb{A}_*(M)=emptyset$ if and only if $M$ is a uniform module and ann$(M)$ is a prime ideal of $R$. | ||
کلیدواژهها | ||
zero-divisor graph؛ Annihilating submodule graph؛ Weakly annihilating submodule | ||
آمار تعداد مشاهده مقاله: 2,110 تعداد دریافت فایل اصل مقاله: 2,031 |