COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS | ||
Journal of Algebraic Systems | ||
مقاله 8، دوره 3، شماره 1، آذر 2015، صفحه 88-95 اصل مقاله (213.54 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2015.490 | ||
نویسندگان | ||
M. Jalali؛ A. R. Ashrafi* | ||
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P.O.Box 87317-51167, Kashan, I. R. Iran | ||
چکیده | ||
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$. The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of order $4p$ or $p^3$, where $p$ and $q$ are primes. | ||
کلیدواژهها | ||
Conjugacy class؛ normal subset؛ $p-$group | ||
آمار تعداد مشاهده مقاله: 1,959 تعداد دریافت فایل اصل مقاله: 1,497 |