ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS | ||
Journal of Algebraic Systems | ||
مقاله 4، دوره 3، شماره 2، فروردین 2016، صفحه 133-146 اصل مقاله (150.03 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2015.613 | ||
نویسندگان | ||
M. Jahangiri* 1؛ Z. Habibi2 | ||
1Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran AND Institute for Research in Fundamental Sciences (IPM) P.O.Box: 19395- 5746, Tehran, Iran. | ||
2Department of Mathematics, University of Payame Noor, P.O.Box 19395-3697, Tehran, Iran. | ||
چکیده | ||
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standard graded ring, $M$ be a finitely generated graded $R$-module and $J$ be a homogenous ideal of $R$. In this paper we study the graded structure of the $i$-th local cohomology module of $M$ defined by a pair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. More precisely, we discuss finiteness property and vanishing of the graded components $H^{i}_{R_{+},J}(M)_{n}$. Also, we study the Artinian property and tameness of certain submodules and quotient modules of $H^{i}_{R_{+},J}(M)$. | ||
کلیدواژهها | ||
graded modules؛ local cohomology module with respect to a pair of ideals؛ Artinian modules؛ tameness | ||
آمار تعداد مشاهده مقاله: 1,813 تعداد دریافت فایل اصل مقاله: 1,395 |